{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " ASE atomic visualization\n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", "\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Recomended to install a beta version of ASE that has better onetep support and will be implemnted in the main ASE package soon\n", "# pip install --force-reinstall --no-deps git+https://gitlab.com/tomdemeyere/ase.git@onetep\n", "#This is the recomended way to generate the bcc Li slab however the outputs discussed in the tutorial are generated from the hashed out code below\n", "from ase.io.onetep import get_onetep_keywords\n", "from ase.build.surface import bcc100 \n", "from ase.lattice.surface import surface\n", "from ase.visualize import view\n", "from ase.build import bulk\n", "from ase.io import write\n", "\n", "#not recomended to use this method as it is not as robust as the bcc100 method but was used to generate the outputs in the tutorial\n", "# Li_bulk = bulk('Li', 'bcc', a=3.466, cubic=True)\n", "# Li_surface = surface(Li_bulk, (1, 0, 0), 10, vacuum=25)\n", "# Li_surface = Li_surface.repeat((3, 3, 1))\n", "# write(Filename, Li_surface, format='onetep-in', keywords=keywords)\n", "\n", "# Create a 3x3x10 bcc Li slab with 25 Angstrom vacuum (Recommended)\n", "Li_surface = bcc100('Li', (3, 3, 10), a = 3.466, vacuum=25)\n", "Li_surface.set_tags([0]*len(Li_surface))\n", "#write a onetep input file with the provied keywords\n", "Filename = 'Li_surface.dat'\n", "keywords = get_onetep_keywords('tutorial_11/keywords.dat') # path to keywords.dat - specify your own path\n", "write(Filename, Li_surface, format='onetep-in', keywords=keywords)\n", "#visualise the slab within the notebook\n", "view(Li_surface, viewer='x3d')\n", "\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABvwklEQVR4nO3df1xb930v/teREL9skADHjhM7iUTcJmmTGmHSpN3S1hL2mnVdF2M7a/c7BpztcW+3NgazbrfN3b21cbzt9t6tNrK7H99tbQ2YdFtvemPA2dLfAYTzO02MwEnsxIkRQmBA6Mf5/nF0DgIkkDgSOke8no8HD6EfnPOxj470Pu/P5/35CKIoiiAiIiIiXTBkuwFERERElDwGb0REREQ6wuCNiIiISEcYvBERERHpCIM3IiIiIh1h8EZERESkIwzeiIiIiHQkL9sNWG2RSARXrlxBSUkJBEHIdnOIiIiIAACiKGJiYgI33XQTDIbE+bU1F7xduXIFW7duzXYziIiIiOJ66623sGXLloTPr7ngraSkBID0H1NaWpqRfQSDQZw7dw67du2CyWTKyD4ou3iM1wYe59zHY7w26OU4+/1+bN26VYlVEllzwZvcVVpaWprR4K24uBilpaWafpPQyvEYrw08zrmPx3ht0NtxXm5YFwsWiIiIiHSEwRsRERGRjjB4IyIiItIRBm9EREREOrLmChaIiIgovnA4jGAwmO1mpF0wGEReXh5mZmYQDodXff9GozGthRIM3oiIiNY4URTx7rvvYnx8HKIoZrs5aSeKIm688Ua89dZbWZugv6CgABs2bEjLTBcM3oiIiNa48fFx+Hw+3HDDDVi3bl3OrUAUiUQwOTmJ9evXL7lyQSaIoohgMIjx8XFcvnwZAFQHcAzeiIiI1jBRFPHee++htLQUGzZsyHZzMiISiWB2dhaFhYWrHrwBQFFREUpKSvD222/j2rVrqoM3FiwQERGtYeFwGOFwOGMT15NEEASYzWYEAgHV4woZvBEREa1hoVAIAJCXx864TJOLFtQWTTB4IyIiopwb56ZF6fo/ZvBGREREpCMM3oiIiIiW4HK5st2EeRi8EWVQOCLm5JxJRERa5/F4cOzYMZSVlWHbtm34xje+gZ6enhVty+fzpbdxKjF4I8qQ2VAEtX/9n/jC6Z9nuylEtEJvjk7hgWPP4B9/MpLtplCKbDYbmpqaYLPZ4HA48MUvfhFOpzPua5ubm7F3795VbuHKsbSEKENevDwOz/vX4Xn/OsIREUYDBwMT6c3R//cq3vRO4av/9jJ+92O3Zbs5tALl5eXLvqa2tlZz2bWlMHgjypBITHfp9dkQSgvTt64dEa2O6dnVXwdTK0RRxHRQO//+IpMxYxWxCzNyPp8PR44cUe739PRgdHRUud/Y2AibzZaRtiSDwRtRhszEfOhdDzB4I9KjtZwxnw6Gcdd/ezrbzVC88t93ozg//WGL2+1Gc3MzPB4PhoaGAAAWiwWtra3Ka44dO4ampqa073ulOOaNKEMmZkLK79cDoSVeSURaZeDcZznPbrfPC9T0gJk3ogzxT88tfxIbyBGRfsRm3tba2NUikxGv/Pfd2W6GoshkzHYTNIPBG1GG+GfmgrfrAe2MGyGi5MUm3iZnQjAXr53hD4IgZKSbUks8Hk9SY9e01GUKsNuUKGP803PZtkl2mxLp0mwoovwee0FGucHtdme7CSuSUvB24cKFlDae6uuJcsnEvMwbgzciPYq98GLwllt6enpgsViy3YwVSSl4a2trS2njZ86cSen1RLnEP8PMG5HexQ55iM2mk354vd64jzc3N2d1ug81UurMTjUYa29vnzdPCtFaEluwwOCNSJ+uM/OmWx6PB21tbXC73fD5fPjGN76BwsJCeDwetLe3w+fzoby8HG63G0eOHFGW09La+LZ4UgrefD4fenp6kl6rUU+zFROlm5/dpkS6NxEbvE0zeNMTm82G1tZWtLa2IhKJwO/3o7S0FAaDYV5Pot1uR0dHRxZbmrqUgreBgQH09/ejvLwce/bsWfb1Bw8eXHHDiPSO87wR6d/8zBvPY9KGlIK3qqoqVFVVAQDOnj2LsbEx7NixA9u3b4/7+traWtUNJNKrQEyV2gSDNyLdiURETMUsjxUIccof0oYVT+AiZ96Gh4dx6tQpVFRUwOl0orS0dNFriNai2CkGmHkj0p/rs/PP29hzmiibVM++Z7VaUV9fDwDo7e2Fz+dDWVkZdu7cqbpxRHoWm3kLhpMbJ0pE2hFYEKwxeCOtSOskvQ6HA3v27MHAwAC2bduG48ePp3PzRLoSDEfi/k5E+hCOzL/oYvBGWpG24G1kZASPPvooKioq0NzcjKqqKjidznRtnkh3Yj/oF34JEJH2LbzoWpiJI8oW1cHb6dOnUVNTg8rKSvT19eHo0aMYGxtDe3t7wkIGorVgNuaDP8RuUyLdYeaNtGpFY94uXLiAI0eOoLOzE2azGfv27YPL5VIqUYnWunBEnPfBH4rwQ59IbxaOVZ3l8AfSiJQyb8ePH8e2bdtQXV2tZNe8Xi9OnjwZN3B79NFH09ZQIj1ZeIUeYrcpke4w80ZalVLmrampCXv37sXJkydhs9kgCAJGRkbivnZoaAg9PT3paCOR7iy8Qme3KZH+cMwbaVVKwZvNZsP+/fvh8/kwODi45DJZHo8n4WKwRLluceaNH/pEerMw88ZJekkrUgrenE4nHnrooaRfPzQ0lHKDiHLBoswbu02JdGfhRRe7TfVFXpj+2LFjsNls+J3f+R1lYXqv14v9+/ejrq5u3mtdLhfKy8vR2NiobGdoaAjt7e1oaGhAa2trtv4586QUvKXaaK38I4lW26LMG7tNiXRn4XnLggV9kRemd7vdsFqt+OIXv6gsTA8AlZWV8Hg8aGpqUl7b09ODHTt2oKmpad62Ghsb5y1mn20pFSyYzeaUNp7q6wHA5/PB5XIlXBf12LFjcLlccLlcOHbsWMrbJ1oNC4M3zvNGpD8LM+bMvOWWxsZGNDc3z3usvLw87mvtdjsqKytXo1lJUb08Vjq53W709/fD5/PFHS8nB2sNDQ0AgJ6eHs1Fw0TA4g95rrBApD8M3nKbxWIBICWN5N+TeT0gxSOjo6OLXlNRUbEoa5cJmgre7HY77HY7Ojs74z5/5MgRDA8PK/edTidqa2sZvJHmLOxeYeaNSH9Ca73aVBSB4FS2WzHHVAwIQto2NzAwALvdvmTg1tPTA5vNBpvNpiSOAKxKgLYUTQVvS/F4PAmj456enoRLcQUCAQQCAeW+3+8HAASDQQSDwYy0Vd5uprZP2bfcMZ4OzAIADAIQEaXMG98P+sNzOfctdYwDsyEAQH6eAbOhCAKhcE6+F4LBIERRRCQSQSS2SGP2OgxHt2SvYQtEDr8N5K9L+e9iZ8YQRRFerxenTp1Cf38/uru75/2bRVFU/i8AoL29HU1NTfP/X1SIRCIQRRHBYBBGo3HR88m+v3QVvMVjsVjg8/kS/t2RI0fw+OOPL3r83LlzKC4uTlfz4uru7s7o9in7Eh3jV30CACNMBhGBsICZ2SCeeuqp1W0cpQ3P5dwX7xgPjkbPY4QxCwGTUzM5eR7n5eXhxhtvxOTkJGZnZ+eeCE7BkrVWLeafmABMqU/XEg6H8dxzz+Ef/uEflMfuu+8+paJUTurEvvYv/uIv4PV60d7ejj/8wz+c9xo1ZmdnMT09jWeffRahUGjR81NTyWU6dRO8JVJeXr7kfHItLS340pe+pNz3+/3YunUrdu3ahdLS0oy0KRgMoru7G7W1tTCZTBnZB2XXcse44NX3gFcvoLSoAO9PzgIGIx58cHcWWkpq8FzOfUsd4/AL7wCvvwjL+iJc980AxrycPI9nZmbw1ltvYf369SgsLJx7QiyRsl0aUbrCblOj0Yh7770Xv/d7v4eSkhIIS2xDfu2f//mfAwA+/vGPY/369WmLF2ZmZlBUVIQHHnhg/v91VLJBou6Dt+UmAi4oKEBBQcGix00mU8Y/jFdjH5RdiY5xOFrIva4gD+9PziIUjvC9oGM8l3NfvGMsRs/j4nzpqzIYEnPyfRAOhyEIAgwGgzKNhsJYkp1GpVFssCb/O5d6bexrdu3aBQBL/k0qDAYDBEFI+JmS7PsrqeBtfHwcw8PD2L59e0qNTCebzRb3cZ/Pl/A5omyRq0uLoh/6ERGIREQYDOkbbEtEmSUXGhUXSOfxbDjC83iNWaqYQZ78F4Ay2e9qSSqUNJvN+O53v4vdu3ejpaUl4XqmmWSz2WCxWOKOfUtUrECULfKUAuvy5wakcpUFIn0JRgepF5vmzmNO1Jvbkl3Ws7a2Fg0NDairq8ORI0cy3KrFks4DHj16FE8//TT27duHo0ePYvfu3Th9+nTaBvHFSvSf19LSMm+x+87Oznmlu0RaEVAyb3Mf+pwuhEhf5HN2XQGDNz3yeDw4duwY+vv70dvbi2984xsJCxzl13o8HvT09ODYsWPz4o1Ybrdbyci53W4MDAxk6F+QWMqduFVVVTh58iSefvpplJWV4cCBA9i9eze6urpUN0b+z2tra4Pb7UZzc/O8Od+amprg8/nQ2dmJzs5O9PX1cY430iQ581YcE7wFuTg9ka4Eo8tjycMfAE7Uqyc2mw1NTU0YGxvDG2+8gS9+8YsJu0FjXzs0NISmpqaEvXr9/f3weDxKT2DsOqirRVXBwp49e7Bnzx4AwKlTp7Br1y6UlZWhsbERO3fuTHl78n/eUpPfxT632n3MRMmaC97mTrEw1zcl0pVw9ILLZBCQbzRgNhxh8Ebw+XwoLy+H3W4HIAVzbrdbub8a0lM+AaC+vh7nzp2Dy+XCwMAAdu3ahUcffRQXLlxI1y6IdEP+gC80MfNGpFdy5i3PKCA/T/q6XHOrLNAi8ooLsvLy8oRz0WZK2oI3mdlsxqFDh3Du3Dk0NTXhu9/9LmpqarJW6ECUDXK1aUGeASajVJnGMW9E+iKfs0aDQQnemHkjp9M5L1jzeDyrXjiZ0XnerFYrjh49CgAYHBzE0aNHIQgCTpw4kcndEmWdPKg5P88Ao0FAMCwixG5TIl2R1zY1GQUUMHijKIvFgsbGRrhcLvh8PrS2tia1sH06rdokvXKhA9FaIH/A5xsNMBkMmEGEU4UQ6UxIybzNdZvOhlNfnolyT7bH3Ke925SI5sbFmIwGGKPdpiFOMUCkK3LwZjIakG/kmDfSDgZvRBmgZN7yDMiLLqvCzBuRvshDHWIzb7kcvIkiP6MyLV3/xwzeiDIgGI4N3uTMGz8YifQkFDtVSA6PecvLk0ZQhUKhLLck9wWDQQCA0Whc5pVLY/BGlAHzMm9ytymnCiHSlVBMtWkuFywYjUYYjcaMrJhEc0RRxPj4OAoKCpJegD6RVStYIFpL5GrTAmNM5o3dpkS6Io9TleZ5kzIluRi8CYKAjRs34p133kFBQQHWrVsHQRCy3ay0ikQimJ2dxczMDAyG1c1biaKIYDCI8fFxTE5O4uabb1a9TQZvRBkwP/MWHfPGblMiXZEvuPKiKywAubu2qdlsxvT0NK5du4b3338/281JO1EUMT09jaKioqwFpgUFBbj55ptRWlqqelsM3ogyYDam2nQu85abH/pEuSqkrLAw120aCObmVCGCIGDz5s3YuHGjMi4rlwSDQTz77LN44IEHVHdZroTRaEzrfhm8EWVA7CS9c2PemHkj0pNwbOYtL7czbzJ5/FuuMRqNCIVCKCwszErwlm4Z7fh99NFHM7l5Is2K7TY1GthtSqRHwZgxb7lcsED6ozrz1tXVhb6+vkWP+3w+tLe3cyksWpOUzJvRAJNBXtuUH/pEehI388bgjTRAVfB2+PBhuFwu7NixY9G6Xj6fT82miXRtfuZNCt6CzLwR6UpQCd5iVljI8W5T0gfVmTev15vwucOHD6vdPJEuzVvbNPqhH+aYNyJdkbPl0lQhcsECgzfKPlVj3mpqapZ8vqWlRc3miXQrtmBhLvPGD30iPZGz5XkGw5opWCB9UF2wsNSMzB0dHWo3T6RLwZhuUxOrTYl0KRyZW9u0IIcn6SX9UdVtarPZ0NzcDIvFEjcL19bWhgMHDqjZBZEuBeJk3hi8EelLiAULpFGqgjeHwwGfzweLxYK2trZFz4+Pj6vZPJEuiaI4b8ybHLxFGLwR6Yo85s1oZPBG2qI689bf35/w+YMHD6rZPJEuxVaV5ucZYBDkqUIYvBHpiTy7j1EQUCBXm4Zyc4UF0hdVY95OnTq15PONjY1qNk+kS7EDmudl3kQGb0R6Ip+zBmHtrLBA+qAq81ZVVQVAmqj3zJkz8Hg8sNls2LVrFx555BHleaK1JBjTrRKbeWPwRqQvcrbcYABXWCBNUV1tum/fPhw4cACiKMJqtUIURRw6dAi7d+9OR/uIdEe+MjcaBBgNQky3aTZbRUSpCkcvuIwCx7yRtqjKvD3xxBPYv38/2tvbFz136tQpHD9+HI899piaXRDpTmyxAgBEb5h5I9KZSMxUIcokvQzeSANUZd4sFgv27NkT97n6+nqI/LKiNSgQM8cbAGXMGwsWiPRFPmUNBkG5GGPmjbRAVfAmRLuDEikrK1OzeSJdkj/c5WWxOOaNSJ+UMW8CM2+kLaq6TS9evKjqeaJcJC+DJQ9wVoI3Zt6IdCUSM+bNaGS1KWmHqszb/v37sXv3bjzzzDPKMll+vx9dXV2oqanBww8/nJZGEulJ7LqmQEy3KTNvRLoSW23KggXSEtVThRw6dAj19fUYHh5WHrdYLHC5XNi+fbva9hHpzsKCBVabEumTknkzCJwqhDRFVfAGAE6nExcvXoTb7cbAwABsNhscDkc62kakS/IM7AWm+dWmLOAh0hdlYfp5Y964wgJln+rgTWa322G32+c91tXVhYceeihduyDShcSZNwZvRHoin7KCMFdtGhGBUDiCPKPqaVKJViyl4G1kZATl5eUoLS0FAJw/fz7ha30+H44cOcLgjdYcuRpNzrwZOOaNSJdi53mTz2dAGtfK4I2yKaXgzW63o7KyEn19fQCAuro6+Hw+WCyWuK8fHx9X3UAivQkE5WpTIwCpywVgtSmR3sxbYSEmWJsNRVCcn61WEaUYvHV0dKC8vFy5v2PHDpw7dy7h6w8ePLjylhHpVCC8oNuUmTciXYqtNs0zGmAQpG5TFi1QtqUUvC0sRGhra1vy9Y2Njam3iEjnAsEFBQvKJL1ZaxIRrUBstSkgTRcyE4xwol7KOlWd9lardcnnq6qq1GyeSJdmF2beoguRsNuUSF/kU1a+AJPPaQZvlG1pH3HZ29uLCxcupHuzRLqhjHlbWLDA4I1IV+RzVl4KssAkjWNltyllm6rgraWlZdFjNpsNZrMZZ8+eRVdXl5rNE+mSUm0qFyxwzBuR7sRmypVuUy6RRRqhap63eJOOyl2pVqsVx48fV7N5Il1S5nnLWzDmjZk3It2IvdiSz2GuskBakVLwNj4+Pm8ZrOHhYTz//PNxg7j+/n50d3fjscceU99KIh1RVljIm99tytiNSD9ihzkYon1UXGWBtCLlzNvo6Cg6OjrgcrkgCAI6Ojrivq66uhoul0t1A4n0ZnZBt6lcsMBuUyL9iD1dY6tNAWbeKPtSCt7MZjMcDgccDgfq6urQ2dmJkydPZqptRLoUWNhtamC3KZHexF5sGdhtShqz4jFvTqdTqcBZ6Pz58ygvL8f27dtXunki3VrUbcq1TYl0Z163qbAg88aCBcoyVdWmCyftlVVXV8NsNrNggdakRQULHPNGpDtLVZtynjfKNlXVpoC0WL3b7YbX6533uM/nU9ZAJVpL5qYKWbjCAqM3Ir2Y320q3c4VLDB4o+xSFbwNDg6iurpaWZheXvfU6/WisrIyYTEDUS5bWLAgjy5gtymRfsiZN4MwN0lvfh4n6SVtUBW8uVwuDA0NwWq1YnBwEMDckljDw8Pw+XyqG0ikN4sybwZm3oj0Rr7WMsSM7WbBAmmFqjFvdrtdmZTXZrPNmxrEarUu6kolWgsWFiwYuTwWke7I3abyPI0Apwoh7VAVvMVWm5rNZvT19eHSpUvKY263W83miXRpYcGCgWPeiHRH7jY1xnzPzS2PxUl6KbtUBW+iKOLw4cOoqakBABw+fBhOpxPPPPMMurq6WLBAa9LCtU2V4I0X60S6IWfKjYbF3aaBIE9myi5VY97q6+tx6tQpVFZWAgDq6urg8XjgcDggCAK6u7vT0kgiPVEKFkxyt6n0OFdYINIPpds0ZjpTzvNGWqF6qpD6+vp595uamtDU1KR2s0S6paywYOQkvUR6Ja/ZHS/zxjFvlG2quk1PnTqFRx99NF1tIcoJSsGCaX7BgsjMG5FuyMm12GpTFiyQVqjKvHV3d8Nms6WrLUlzuVzw+XywWCwYGhpCS0uLMtccUTZFIiKCYSlIUzJvcrUpgzci3ZAz5fOqTeUVFthtSlmmKnirqanBoUOHEj7f0tKCI0eOqNnFIseOHUNDQ4MSrPl8PtTX13NCYNKE2LEwBab5BQv8vCfSD7k6fF61abQIiQULlG2qgre9e/cq65fa7XZlhQVZT09P2oO37u7ueWPqLBYLJwMmzYhdNmfR8lgc80akG/GqTVmwQFqhKnhbrss0dh64dLFYLKitrUVHRwcsFgs8Hs+S7QgEAggEAsp9v98PAAgGgwgGg2lvn7zt2FvKPYmO8fVp6b0mCIAYDiEYESBGpDFwoUiE7wmd4bmc+xId49nofUGYey5PkAK6QDDE94TO6OVcTrZ9gqhiFPWOHTvQ29sLs9kc9/l9+/ahvb19pZuPy+fzobq6Gh6PB01NTaisrERDQ0PC13/ta1/D448/vujxb3/72yguLk5r24hGZ4D/PpgHk0HE8Y9KQdtFP/B/Xs7DxkIRX6ni5J5EejA8Afyvl/KwoUDEn9ul8/YFr4Bv/cKI29aL+JO7eS5T+k1NTeHzn/88xsfHUVpamvB1qoK33t5eOByOFT+/Ui6XC93d3ejs7ITT6VSycPHEy7xt3boV165dW/I/Ro1gMIju7m7U1tbCZDJlZB+UXYmOsef969j9v3+M0sI8DHxlJwBg4NIYHj7dh1vLi9HzJ7+UrSbTCvBczn2JjnHfyBg+/60+WCuKce6PpfP2P19/Hwf+aRAfuqkE33v0/mw1mVZAL+ey3+/Hhg0blg3eVHWbxgvMent7UVFRge3bt2ckcGtubla6TT0eD/bu3Yvq6moMDQ3FfX1BQQEKCgoWPW4ymTJ+AFdjH5RdC49xODr7ToHJqDwu30Yg8v2gUzyXc9/CYywYpOIEo9GgPF5ckA8AmA3xXNYrrZ/LybZN1TxvLS0tix6z2Wwwm804e/Ysurq61Gx+EY/HA5/PB6fTqexrYGAAFosFnZ2dad0X0UrIA5nlYgVgbsAzl8ci0o/41aYsWCBtUJV5i9fjarValVu5EjVdPB5P3O7RxsbGtO6HaKUCQWkcTH5s8MYVFoh0J948b/J6xZykl7ItpeBtfHwcw8PDyv3h4WE8//zzcYO4/v5+dHd347HHHlPfyiin04nW1lZlgl7ZwMAA2tra0rYfopVauCg9ABiicVyEk/QS6UZkqbVNGbxRlqWceRsdHUVHRwdcLhcEQUg4OW51dTVcLpfqBi7U0dGBI0eOoKKiQpnjrbW1Ne37IVoJ+UM9P163KYM3It2IxFnblMEbaUVKwZvZbIbD4YDD4UBdXR06Oztx8uTJTLUtLovFwmCNNGsu8zYXvHFheiL9WWpt0wCDN8qyFY95czqdGZmEl0jPZsPRRekZvBHpWtwVFoxzBQuiKPI7kLJGVbVpJqYCIdIzec3DeNWm7DUl0o941aYFprnzmhWnlE2qgrflPProo5ncPJHmxCtYUKpNGb0R6YYcvMUm1+TMG8Bxb5RdqqYKAYCuri709fUtetzn86G9vR0nTpxQuwsi3YhXsCBXm7LblEg/luo2BRi8UXapCt4OHz4Ml8uFHTt2LJp/zefzqdk0kS4FQonHvLHalEg/4lWbGgwCTEYBwbDIogXKKtWZN6/Xm/C5w4cPq908ka7Mxqk2lT/8mXkj0o941aaANCQiGA4x80ZZpWrMW01NzZLPx1s+iyiXBeJ1myqZt6w0iYhWIBKn2xTgElmkDaoLFvx+f8LnEk3gS5Sr4hYsxHz4RxjBEenC3AoLC4I3IyfqpexT1W1qs9nQ3NwMi8USNwvX1taGAwcOqNkFka7Ez7zNPR8WRRjAuaGItC4cZ3ksgBP1kjaoCt4cDoeyzmi8tUXHx8fVbJ5Id+IWLMR8+ocjIkzGRX9GRBqzXLepfK4TZYPqzFt/f3/C5w8ePKhm80S6E7dgIabbhQWnRPogFxgZDAsLFthtStmnaszbqVOnlny+sbFRzeaJdGcmKHebxh/zxol6ifQhHD1VjQvHvLHblDRAVfBWVVWFkZERHDx4EDU1NTh//jwAoLe3F11dXaiqqkpLI4n0Qu5KKc6fC95iBzxzuhAifUjUbVoUHfcwE2S3KWWPquBtcHAQdrsdANDQ0KBMzOtwOFBVVYWuri7VDSTSk+lZ6QO90BQbvM09z2pTIn2ItzwWwOCNtEHVmDeXyzVvkt7YYM1qtaKnp0fN5ol0Zzr6gV6Uz25TIj0Lx1mYHgAKo+e2fKFGlA2qMm9y1i0RYeElC1GOk4O3wpiCBUEQlKt3LpFFpA/LdZtOBznmjbJHVfC2cCoQccEX01KVqES5aGZ2ceYNmLt6j/DznkgXlOWxEgZvzLxR9qguWKipqcGTTz6JkZERjI2NYWRkBF1dXdi2bRunCqE1R+k2XTCZm/wFwG5TIn1I1G0qX5hxzBtlk+pJepubm/HII4/My8JZLBa4XC5s375dbfuIdEXpNl0YvMndpixYINIFMcEKC/K5zTFvlE2qgjcAqKurQ11dHdxuNwYGBmCz2eBwONLRNiJdiUREZZ63RN2mnCqESB8STdLLblPSAtXB2+nTpzE+Po4vf/nLSgFDb28vBEHAzp07VTeQSC9iJ+1M1G3KggUifUjYbWqSRhsxeKNsUjXm7fTp07h48SK+853vzHvc4XDAarUqk/YSrQWxH+YLu02NDN6IdCVhtak85o3dppRFqjJvY2NjOHr0aNznrFYrBgcH1WyeSFfk4C0/z7DoA3+u23TVm0VEK5Co2rSQ3aakAaoyb2VlZUs+7/F41GyeSFfkAcwLu0yBuTkPOeaNSB8iCbtNGbxR9qkK3paax83v9+PixYtqNk+kKzMJpgkBAGP0TGO3KZE+RBJUmxZxhQXSAFXdpg0NDdi2bRsOHz6M6upqWCwWeDweuN1uHDlyBL29velqJ5HmxVsaS6ZM0svgjUgXlqs25TxvlE2qgje73Y4TJ07g4MGD8Hg8EAQBoiiisrIS7e3tnOeN1pR4i9LLlEl62W1KpAuJuk0LleCNA1gpe1RPFeJ0OnHx4kUMDw/D4/HAZrPBarWmo21EujK3usLi0QgGZt6IdCVh5i2fY94o+1QHbzKr1cqgjda0maW6TQ2sNiXSEzlJnnhhegZvlD2qChaW8+ijj2Zy80SaslS1qbI8FjNvRLogz/O2qGAhen7PhiIcBkFZozrz1tXVhb6+vkWP+3w+tLe348SJE2p3QaQLMwnWNQViJunlhz2RLoSVatP4Y94A6ZxfV5C2DiyipKl61x0+fBgulws7duyAxWKZ95zP51OzaSLdmZbXNY2beYt2mzLzRqQL4QQrLBTkzXVYTTN4oyxR/a7zer0Jnzt8+LDazRPpxlJThRg4SS+RrijVpguCN4NBQKHJgJlghHO9UdaoGvNWU1Oz5PMtLS1qNk+kK0tP0it9ATDxRqQPSrXpgm5TgHO9UfapLljw+/0Jn+vo6FC7eSLd4DxvRLlDPlWXCt5YcUrZoqrb1Gazobm5GRaLJW4Wrq2tDQcOHFCzCyLdWHqFBemWY96I9CGijHlb/Fwhl8iiLFMVvDkcDvh8PlgsFrS1tS16fnx8XM3miXRlOoluU1abEulDompTgJk3yj7VmbelFqc/ePCgms0T6crMEvO8Caw2JdKVRNWmAMe8UfapGvN26tSpJZ9vbGxUs3kiXZGvwguXXJh+VZtERCuUqNoU4BJZlH2qMm9VVVUApIl6z5w5o6xtumvXLjzyyCPK80RrAbtNiXJHJLqUXbxuU7koaXqW691RdqiuNt23bx8OHDgAURRhtVohiiIOHTqE3bt3p6N9RLqx5PJYrDYl0hWOeSMtU5V5e+KJJ7B//360t7cveu7UqVM4fvw4HnvsMTW7INKNuYXpF18TsdqUSF+WqjblmDfKNlWZN4vFgj179sR9rr6+HiK/qGgNmV5ibVP56p3dpkT6sGTmjVOFUJapCt6EOG/qWGVlZWo2T6QryXSbMnYj0ofIEtWmhew2pSxTFbxdvHhR1fNEuWRGXph+iWpTdpsS6YOywsISU4UweKNsURW87d+/H7t378YzzzyjLJPl9/vR1dWFmpoaPPzww2lpJJHWhcIRzIajwRurTYl0b8m1TaPjWmfYbUpZonqqkEOHDqG+vh7Dw8PK4xaLBS6XC9u3b1fbPiJdmAnNTRkQb8yb/PnPalMifVDmeWO1KWmQquANAJxOJy5evAi3242BgQHYbDY4HI50tI1IN+TxboIAFOTFqTZVxrwxeCPSAyXzFm9tUwZvlGWqg7fTp09jfHwcX/7yl2G32wEAvb29EAQBO3fuVN1AIj2ILVaIV8gzt8ICgzciPQgvlXmLjmudYrcpZYmqMW+nT5/GxYsX8Z3vfGfe4w6HA1arFefPn1fVOCK9mAyEAADrCuJfD81N0rtqTSIiFZaqNpXP8+vR855otanKvI2NjeHo0aNxn7NarRgcHFSzeSLduD4rfYivTxC8MfNGpC/y8NR4mfT1DN4oy1Rl3pabx83j8ajZPJFuzGXeFhcrAHPjZliwQKQP4aUyb/lS8DYZYLcpZYeq4K2/vz/hc36/n/O80ZohX4HLH+oLGZh5I9KVpapNmXmjbFPVbdrQ0IBt27bh8OHDqK6uhsVigcfjgdvtxpEjR9Db25uudhJpmvwhnrDblPO8EenKUtWmxQVz1abhiBg3O0eUSaqCN7vdjhMnTuDgwYPweDwQBAGiKKKyshLt7e0ZneetubkZlZWVAIDy8nLU1dVlbF9Ey5G7T4oTFSxwhQUiXVEyb3ECs9iLtOuzIZQWmlatXURAGud5Gx4ehsfjgc1mg9VqTUfb4vL5fHA4HOjt7YXFYoHb7UZ1dTVEfilSFk0pmbf4Y96MrDYl0hU5SR6v27QgzwCjQUA4ImIqEGbwRqtOdfAms1qtGQ3aZM3Nzdi/fz8sFgsAKfvX3d2d8f0SLWVydrkxb9ItLzKI9EHuNo1XbSoIAtblG+GfCSnFSkSrKW3B22pxuVwYGhqCx+OBx+OB0+mE0+nMdrNojbue9DxvDN6I9GCped4AqevUPxNi0QJlha6CN3nqEbfbDZvNBpvNhsbGRuzduzdhABcIBBAIBJT7fr8fABAMBhEMBjPSTnm7mdo+Zd/CYzwxLd0WmYS4x12IZtyC4TDfFzrCczn3JTrG8vjUSDgU9/gXR1dZGJ+a4ftDB/RyLifbPl0GbxaLRVmKq7W1FVarFWNjY3H/5siRI3j88ccXPX7u3DkUFxdnrrEAu3PXAPkYe940ADBg+PVX8dT4K4teJz/vGR7BU09x/kO94bmc+xYe42DQCEDAs//5HygvWPz64HT0+Z88h7HXmFHXC62fy1NTU0m9TlfBm2zHjh3K7xaLBT6fDz09PXGzby0tLfjSl76k3Pf7/di6dSt27dqF0tLSjLQvGAyiu7sbtbW1MJk4kDUXLTzG373aD4x58dHq7Xjwns2LXn/x/EWcu+zB1ltuwYMP3pWFFtNK8FzOfYmO8WPPdQNhEY6dO7HZXLjo7868149Lk17c8eGP4MHtN61mk2kF9HIuy72Dy9FV8Gaz2eI+Ls8vF09BQQEKChZfNplMpowfwNXYB2WXfIzlBapLiwriHvM8Y/RUEwx8T+gQz+Xct/AYy8NTC/LjH/v1BdJj02HwvaEjWj+Xk22bqhUWVps8zm1hoObz+eZl44hW23IL0xujZxon6SXSB2WS3jjVpgBXWaDs0lXwBkhj3M6cOaPc7+zshNPpVMbAEWWDnHlLtMICq02J9CP2IitRtal8oTbF4I2yQHW36cjICI4ePYqBgQG0trZi586d6O3txfj4OB566KF0tHGeuro6eL1eHDt2DAAwOjqq+QGIlPuWW5jeyBUWiHQj9jyNN0kvMBe8cXF6ygZVwdvg4CAcDgf27duHhoYG+Hw+AIDD4cDw8DC6uroyEsA1NDSkfZtEKyWKItc2JcohsRnyeGubAnOrqbDblLJBVfDmcrng9XqV+11dXcrvVqsVPT09ajZPpAszwYgyuDnRmDd5lnbGbkTaF5sgTzTmTcm8zTJ4o9WnaszbcuPM4i0rQpRr5C5TQQCKTIm6TaVbdpsSad+8btNlxrwx80bZoCp4Gx8fn3d/4bqN/f39ajZPpAvyh3exyagUJizEblMi/ZjXbZoo85bP4I2yR1XwVlVVhZqaGjz55JMYGRnB2NgYRkZG0NXVhW3btuHgwYPpaieRZi03TQjAalMiPUmu2lTKsrNggbJB1Zg3h8OB5uZmPPLII/OycBaLBS6XC9u3b1fbPiLNW65YAZi7emfsRqR9sd2mCWI35Xyf4pg3ygLVU4XU1dWhrq4ObrcbAwMDsNlscDgc6WgbkS7Ic7wtlXkzKsEbozcirZPPU4OQeOw2x7xRNqVtkl673Y76+noAwIULF9K1WSLNW26ON4DdpkR6EolIt4nGuwFzmbdJBm+UBaqCt5aWlkWP2Ww2mM1mnD17dt7UIUS5KpluU2V5LGbeiDRP7jZNVIAEzGXeZoIRhMKRVWkXkUxV8LawuhSQ5nezWq3Ys2dPwsXiiXJJUgULAjNvRHohFywkWl0BmJ9pvz7LogVaXSmNeRsfH8fw8LByf3h4GM8//3zcIK6/vx/d3d147LHH1LeSSMOuB5Yf82bgmDci3ZAvshJVmgJAvtGAPIOAUERaYcVcZFqt5hGlXrAwOjqKjo4OuFwuCIKAjo6OuK+rrq6Gy+VS3UAirbserTZbl594zNvcPG+r0iQiUiG2YCERQRCwvjAPvqkgixZo1aUUvJnNZjgcDjgcDtTV1aGzsxMnT57MVNuIdME/HQQAlBYmvvI2cGF6It2IJDHmDQBKosGbfya4Gs0iUqx4qhCn08nlr4gA5YPbXJw4eDOy2pRIN+T6g6XGvAGAuciEtzAN/zQzb7S60ro8FtFaNJ5E5k2uNo03PpSItEW+yFou8yaf8/JnANFqURW8NTc3Y2JiIl1tIdIl+ap7qQHLArtNiXRD7jZNJvMGgN2mtOpUrbAwOjqKr3/966ioqIDT6eRyWLQmyR/cpUXLr7DA6aCItC+ZalNgLvPmZ+aNVpmq4K2jo0NZCmtwcBBPPPEEysrKsG/fPpSWlqalgURal1y3qVxtyswbkdbJmbflhnXLF2zsNqXVpnphellVVRWqqqoASCsveDweNDY2YufOnepaSKRhoigqV91LdZuy2pRIP5Ru02Uyb0q3KQsWaJWpCt78fv+8DNvp06fR1taGgYEBOJ1ODA0NYWBgAGVlZThw4IDqxhJpzfXZMORkWukSwZuSeWPwRqR5yVablnLMG2WJquBt7969aG5uxsmTJ3H27FmYzWY0NDSgvb0dVqt13mvPnj2LyspKjoujnCJn3fKNBhTkJa7/kS/g2W1KpH3JVpvKmTd2m9JqU1Vt2t3djdraWgDAuXPn4PV6cfTo0UWBGwDs2bMH/f39anZHpDn+Gam7pLTItOS8h/KXALtNibQv2WpTpWCBmTdaZaoyb3a7Hb29vTCbzUu+bnBwEC6XCxaLRc3uiDQnmUpTYO5LgMtjEWlfsissyOc9x7zRalOVeWtpaVk2cAMAi8UCs9mMlpYWNbsj0hz5Q3upSlOAKywQ6YnSbbpMtSm7TSlbVGXe9uzZk9TrrFYrjh49qmZXRJqkLI21RLECwGpTIj1JttpUvmibmAkiEhGXzdQRpYuqzNtyTp8+ncnNE2Vd7Ji3pXCeNyL9kKtNDUlWm0ZE4Posu05p9aSUeTt//nzSr/X5fGhra+MUIZTT/MoEvcuMeYteJjHzRqR9ya6wUGgyIj/PgNlQBOPTQZQsM3yCKF1SCt7q6urg8/mSLjzgwvWU6+TM23LdpoLAzBuRXohJVpsCUtfptcmANP61LNMtI5KkFLzt2LED586dS/r1Bw8eTLlBRHqiZN6W6zaVgzfGbkSaF05yeSwAMBfl4dpkgEULtKpSGvPW2tqa0sYbGxtTej2R3ihj3lhtSpQzku02BbjKAmVHSpk3ee3Shbq6unDmzBl4PB7YbDbs2rULjzzySMLXE+WKZLtNOUkvkX4kW20KxEzUy8wbrSLV1ab79u3DgQMHIIoirFYrRFHEoUOHsHv37nS0j0jT5rpNk52kl8EbkdYlW20KcK43yg5V87wdP34c+/fvR3t7+6LnTp06hePHj+Oxxx5TswsiTUu229TAalMi3Yik1G0aXWVhhlOF0OpRlXkzm80JJ+qtr69XKnaIclWyk/TKmTdRBM8LIo1TlsdKqmCB3aa0+lQFb0stxA0AZWWsm6bcFYoA1wNhAEkEbzHfAixaINK2sBK8LR+9WYryAQC+qdmMtokolqrg7eLFi6qeJ9Kz69FeEqNBSHqeN4DThRBpXSrdpmXrpOBt9DqDN1o9qoK3/fv3Y/fu3XjmmWfg9/sBAH6/H11dXaipqcHDDz+clkYSadFktJekrNi07JqGsV8CEXabEmmasjB9EsFbRTR4G2PmjVaRqoKFqqoqHDp0CPX19RgeHlYet1gscLlc2L59u9r2EWnWZEj6YC8rzl/2tbEztbPblEjbwtFTNJkVFuTMm3eSwRutHlXBGwA4nU5cvHgRbrcbAwMDsNlscDgc6WgbkaZdj2beytctH7wZYnLcrDgl0jYxhYKF8ujFm5eZN1pFqoK3U6dOwe1248SJE7Db7bDb7elqF5HmTaYQvMVewXOuNyJtS6XbtHy9dP7PBCOYmg2hOF91ToRoWarGvHV3d8NsNqerLUS6cj3abZpU8MZqUyLdCKewMP26fCPyjdJXqZdFC7RKVAVvNTU1OHr0aMLnW1pa1GyeSNNSybwJgqAscs1uUyJtS6XaVBAE5TNg7DrneqPVoSq/u3fvXhw/fhwAYLfbUV5ePu/5np4eHDlyRM0uiDRLniokmeANkK7iQ6IIxm5E2qYsj5XMoDdIRQvv+mcwej2QwVYRzVEVvNlstiWfX24SXyI9SyXzBsgTforsNiXSuEgK3aYApwuh1aeq29Rut2NsbAyRSCTuT6Kls4hywWQKY96AmPVNGbwRaVoqy2MBMRP1croQWiWqgrfW1tYlCxYaGxvVbJ5I064rk/Qm320KcJJeIq1LpdoUAMqLpRVWmHmj1aIqeFtuPjfO90a5ShRFZcxbxfpkM2/SFwEzb0Talkq1KQCUrysAwGpTWj2qgrd4ent7ceHChXRvlkhTJgMhhMXkV1gA5irXmHkj0rZUqk0BoHydlHlj8EarRVXwFm8qEJvNBrPZjLNnz6Krq0vN5ok0yxvtMy3ON6LQZEzqb+SreLmSjYi0SU6OJ91tyswbrTJV1aZinAyC1WpVbuVpRIhyjbwUjjzWJRnsNiXSB2XMW9IFC8y80epKKXgbHx+ftwD98PAwnn/++bhBXH9/P7q7u/HYY4+pbyWRxsgf0mVJVpoCc18E7DYl0rZUpwqRK84ZvNFqSTnzNjo6io6ODrhcLgiCgI6Ojrivq66uhsvlUt1AIi0am5K6TctSyLyx2pRIH1KuNo0Gb77pIMIRMemxckQrlVLwZjab4XA44HA4UFdXh87OTpw8eTJTbSPSrGsT0kzqG9YXJP037DYl0oeUM2/F+RAEQBSB0esBbCwpzGTziFY+5s3pdHIFBVqz3otOxrmxJPngjdWmRPqQauYtz2hAxboCXJsM4D0/gzfKPNXzvJ0+fXpRYUJvby/Onz+vqmFEWvaefwYAcEMqwRurTYl0Qak2TSFBIV/IvT/B9U0p81QFb6dPn8bFixdx5syZeY87HA5YrVYGcJSz3o9m3m5IcoJegN2mRHoxN89b8n+zsVQK3q5GL+yIMklV8DY2NoajR4+ir69v0XNWqxU+n0/N5pNSW1ub8X0QLfRe9Op6U2ny3SMsWCDSh7CytmnymbdN0a7S95h5o1WgKngrKytb8nmPx6Nm88vq7OxET09PRvdBtJAoikrXyA0lzLwR5ZpwiissAHOZt/cmmHmjzFMVvPX39yd8zu/34+LFi2o2vySfzwev15ux7RMl4p8JIRCSBq5tTKXalPO8EemCUm2aSvAWHfP2np+ZN8o8VSssNDQ0YNu2bTh8+DCqq6thsVjg8Xjgdrtx5MgR9Pb2pqudi7S3t2Pfvn1obGxc8nWBQACBwNzJ5Pf7AQDBYBDBYDAjbZO3m6ntU3Zd9k4CAIqMIgyIJH2c5e+B2WCI7w2d4Lmc++Id41C0qkiMJH9+lxdLX6dX/TN8v2iQXs7lZNsniPGWR0hBT08PDh48CI/HA0EQIIoiKisrcfLkSTgcDjWbXnKfNpsN5eXlKCsri7vCg+xrX/saHn/88UWPf/vb30ZxcXFG2ke57RfjAr75ihGbikT86fZw0n/3Vy8acWlSwIEPhnF3ObNvRFp1+jUDXhwzYL8tjI9tSu5cHZkA/vqlPJTli/hadfKfC0Sxpqam8PnPfx7j4+MoLS1N+DpVmTdAmu/t4sWLGB4ehsfjgc1mU9Y3zRSfzwebzZZUQURLSwu+9KUvKff9fj+2bt2KXbt2Lfkfo0YwGER3dzdqa2thMiU/Az/pQ/DCFeCVl2DOF1M6xv94+TlcmvShym7Hrrs2ZbiVlA48l3NfvGP8Pa8bGLuGj9xzNx6s3pLUdq74pvHXL/0Qk2EDPv3pXZwHVWP0ci7LvYPLUR28jYyMoLW1Ff39/WhtbYXVakVvby/Gx8fx0EMPqd38Ii6XCw0NDUm/vqCgAAUFi8clmUymjB/A1dgHrb7RqRAAoNSU2jHOM0hDTAWDke8LneG5nPtij7EIKfAy5eUlfdw3lxkBAMGwiMkgUL6O7xct0vq5nGzbVBUsDA4Owm63QxRFNDQ0KJkwh8OBqqoqdHV1qdn8Im63Gzt27EjrNolSJU8FUJp8oSkAIBq7sdqUSONWUm2an2dQ1jpmxSllmqrMm8vlmlfxefbsWeV3q9Wa9mk8vF4v3G63st2hoSEAwLFjx2Cz2VBXV5fW/RHFI0/CWWpKLQjj8lhE+iCfoqkuML+xpBBjU0G85w/gjhsz0DCiKFXBm91un3d/YR9/uvv8nU4nnE6nct/tdsPlcqGpqSmt+yFaipx5M6eaeeMkvUS6IGfeUv0O21hagF9cneBEvZRxqrpNx8fH591fWPW51DxwanV2duLIkSMAgObmZk7WS6tGXte0ND+1IMzAtU2JdEFeYcGYavAWXWWBS2RRpqnKvFVVVaGmpgZ/+qd/iqqqKoyNjWFkZARutxvNzc3o6OhIVzsXqaurYzcprbpIRMQVn/TBXJZi5k3pNuWYNyJNW8napgBws0UK3i77ptPdJKJ5VAVvDocDzc3NeOSRR+Zl4SwWC1wuF7Zv3662fUSacu16ALPhCAwCYFlht2mY3aZEmraStU0B4OayIgDA5TEGb5RZqqcKkTNgbrcbAwMDsNlsGZuclyjb5A/lTaWFMBomU/pbI6tNiXQhsoJqUwC4ySIFb1eYeaMMUx28yex2+6IChtOnT+PAgQPp2gVR1sldpjeZCwGkGryxYIFID+Trq5Qzb9Hg7bJvGqIocqJeypiUgrfz588n/Vqfz4e2tjYGb5RTLvumAAA3Rce2pGKuYIHBG5GWyeeoYYWZt6nZMHxTQZStS3FsBVGSUgre6urq4PP5YLFYknr9wmpUIr2Tu01vMhcBodT+Vs68MXgj0rbICqtNC01GbFifj2uTs7jsm2bwRhmTUvC2Y8cOnDt3LunXHzx4MOUGEWnZZbnb1FIIXEvtb+XMG3tNibRtLvOW+t/ebClSgrcP32xOc8uIJCm9NVtbW1PaeGNjY0qvJ9I6eQqAm9V0mzJ6I9K0lc7zBrDilFZHSsFbVVXVosdGRkZw8OBB1NTUKGPient70dXVFff1RHomV5HdZC5K+W9ZbUqkDytdHguY+2xgxSllUloWpgewKgvTE2XTZCCE8ekggJUVLHCSXiJ9WOnyWEBM5o3BG2VQWhemjw3WMrEwPVE2yd0glmIT1hWkfuqw25RIH8IrnOcNmD9dCFGmqMq8LZzXbSHOcUO55O0xaZoQ+cM5Vcy8EenDSqtNgbnM21veqbS2iSiWbhemJ1ptw9euAwBuq1i3or9n5o1IH9RUm94a/XwYmwoqwyyI0k1V8CYvTP/kk09iZGREWZi+q6sL27Zt41QhlFNGRqPB24biFf393DxvaWsSEWVAREXBwvqCPNxQUgAAuBT9zCBKNy5MT5SkkWtSN8itK868SbcLM9REpC2RFS5ML7utohjvTwQwfO067tliSWPLiCRcmJ4oSXK3qXXDCoM3rrBApAtKt+mKg7d16BsZUy74iNItowvTE+WKQCiMK+NS9dhKx7zlGTjmjUgP5KKivBV0mwLAbdELvBF2m1KGqBrzRrRWvOWdgihK41k2rF/ZeoXG6OhnZt6ItC2kYqoQYC47L2fridKNwRtREoaj3R+3bShe8RQ48lV8iMEbkabJF1h5xpV3mwIsWKDMYfBGlISR6BX0SosVgJhq0zCDNyItC0WkkvCVZt5urZAq0semghif4nQhlH4M3oiSMBy9graqCN6YeSPSPlEU56YKWWGWfV1BHjZGpwsZZvaNMoDBG1ESPO9PApgbiLwSc/O8caI3Iq2KHZOat5JZeqPkcW9D702qbhPRQgzeiJLw+lXpA/iDm0pWvA0leGPijUizYjPjxhWOeQOAD0Q/K15/b0J1m4gWYvBGtIxrkwF4r89CEIDbN65f8XbymHkj0rz5mTcVwduNUvD2xlVm3ij9Mhq8Pfroo5ncPNGqeP1d6cr51vJiFOUbV7wdeaqQEFNvRJo1L/OmIniTs/S/eJeZN0q/lCbpPX78eNKvHR0dRXt7O06cOJFyo4i05BdXpQ/fbSq6TIHYzBuDNyKtij0/V1qwAAAf2CRl6S/7pjExE0RJoUl124hkKQVvX//611FeXg6LxaI85na7YbPZ5j0GAB6PB5WVleloI1FWvR4N3tSMdwPmlsditSmRdsnThAjC3Dm7EpbifGwqLcBVfwBvvDcJ+y1l6WoiUWrBm9PpRHt7u3L/7NmzsNvtsFqti17b29urvnVEGiB3e8hjWFaKmTci7ZOHpKoZ7yb7wKYSXPUH8Pq7EwzeKK1SGvPW2to67/7Y2FjcwA0AHA4HhoeHV94yIg0QRVEZcKw282Zk8EakeWon6I2lVJyyaIHSLKXgbWGg5vP5lnx9eXl5yg0i0pIr4zOYCISQZxCUeZtWipk3Iu1TlsZSMcebTL7ge+1dv+ptEcVS9e68ePEiJiYSV9I899xzajZPlHUvvj0OQCpWyM9T92FuVMa8caoQIq1Suyh9rLtuKgUAvHR5HKLIizZKH1XfRk1NTaiqqsK3vvUtXLhwASMjI7hw4QJOnz6Nbdu24eGHH05XO4my4qXLUvB2z81m1duSF7lm5o1Iu8JpDN4+sKkE+UYD/DMhvOmdUr09IllKBQsL2Ww2tLe3Y9++ffB4PBAEAaIoorKyEidPnsT27dvT1Eyi7HghGrx9eIv64M0gsNqUSOvkeRjTEbzl5xlw5+YSPP/2OF68PI5bVayNTBRLVfAGAHa7HRcvXoTH48Hw8DBsNlvCIgYiPRFFES++7QOQpsxbdAwNM29E2hUR5TFv6oM3ALh7i1kK3t4ex2fuuSkt2yRSHbzJbDYbbDZbujZHlHWXfdMYmwrCZBRwx2Z1laYAq02J9CCdY94A4O7ohd8L0fGzROmgupxmZGQEBw8eRE1NDc6fPw9AmuOtq6tLdeOIskkuVvjAphIU5K18WSwZx7wRaZ+89nDaMm83WwAAL10ZR4TnPqWJquBtcHAQdrsdANDQ0KBMHeJwOFBVVcUAjnRNHu92dxq6TIHYalN+gBNpVTrHvAHAtk3rUZBnwMRMCMOj19OyTSJV3aYulwter1e5HxusWa1W9PT0qNk8UVYNjIwBQNpmRuc8b0Tal85qUwAwGQ24Z4sZfSNjGLg0hsob1qdlu7S2qcq8yVm3RAQVi/oSZVMgFMaFaLHCjtvSE7zNVZtynjcirZob86Z+kl7ZjtukCev7R7zLvJIoOarenePj8wdgLpyEsL+/X83mibLmxbfHMRuKYMP6fNUrK8g45o1I+8JprjYFgJroBWBfNJtPpJaq4K2qqgo1NTV48sknMTIygrGxMYyMjKCrqwvbtm3DwYMH09VOolUlf8juuLU8bRlkdpsSaV84zWPeAKD6lnIIAjB87Trenwikbbu0dqka8+ZwONDc3IxHHnlkXhbOYrHA5XJxkl7Srb5o90a6ukyBuW4YFiwQaVcokv7Mm7nYhA9uKsFr706gf8SLT9+9OW3bprVJdad+XV0dvF4v+vr6cPLkSZw7dw6jo6PYs2dPOtpHtOrCEVEZm3KvtTxt22XmjUj70l2wIJMvBJ/juDdKgxUHb+Pj46ipqcHIyAgAqXihvr4eDodj3usOHjyIbdu2oaWlRVVDiVbLS5fH4Z8JoaQgD3dtLk3bdjlVCJH2yQVF6Q7e7rdtAAD8+OK1tG6X1qYVB29msxmHDx/GbbfdBr/fD7/fv+g1hw8fxvDwMM6dO4fy8nLO+0a68Ozr7wMAPnZ7BfKM6as44woLRNqXqczbx2+vgCAAr1+dxLvjM2ndNq09qr6ZvF4vdu/eDYvFgrKyMuzevXteEHf27Fm0trbCarXi0KFD6OvrU91gokz74RvSlfEDH7ghrduNDd4WVmYTkTaEMzDmDQAsxfm4Z4sFAPDDN95P67Zp7VEVvA0MDKCurg5DQ0O4ePEi6urq0NzcrDzv8XjmrXfKtU9J6yZmgnC/KVWaPrAtvcFb7JcBk29E2hTOwDxvsge2SV2n8gUi0UqpendWVlaivr4eVqsVVqsV9fX1iybuLS2dGzPESXtJ6346NIpQRMRtFcXYWl6c1m3HdsNwol4ibcpEtalMzub/6OI1Dp8gVVR3my7k8XjUbJIoq3pevQoA+ESau0wBIC/mSp4f3ETapGTejOkP3rZvtaCkMA/e67MYfJMT9tLKqZrnzWazoaamBk6nEwDQ09ODHTt2wO/3o62tDWazGc8//zw+8pGPAAAuXryovsVEGRIKR9Dz6nsAgF0fujHt24/thWHFKZE2KctjZaCnyGQ0wHHHRnzvwhU8/fK7yrJZRKlSFbzV19ejrKwMLpcLANDQ0ACn04m2tjYIgoDh4WHs3bsX1dXV6OnpQUdHR1oaTZQJ/ZfG4L0+C0uxKa3zu8nmZd7CDN6ItCgcHdKQiW5TANj9oRujwdtV/OmDd3I4Ea2IquANkCbpraurm/eY3W5HeXk5zGYzOjo60N7ejvb2dtx2221qd0eUMU+//C4AwHHHJpjSOEWILPa7IMxqUyJNCkeHo6Z7qhDZJz54AwryDHjTO4XX3p3AnWmcS5LWjvR/QwGoqamBxWLB8ePHYTablaIGIq2KREQ8/ZIUvO3+0KaM7EMQBK6yQKRxSuYtA2PeAKA4Pw+/HK1kf+rFdzKyD8p9qjNvIyMjcLvdi4oXfD4f53Uj3fjZ8CiujM+gpDAv7fO7xTIaBIQiIse8EWlUKEOT9Mb6tY9sRs+rV/G9C5fxpdoPsOuUUqYqeBscHER1dTUsFgsAoLxcGifk9XpRWVnJMW6kG0+6LwMAPnPPZhSajBnbT55BQAAc80akVXOT9GakYwoAsOuuG7Eu34i3vNPovzSGGhYuUIpUBW8ulwtDQ0OwWq0YHBwEAFRVVQEAhoeH4fP5VDcwnmPHjgEAhoaGAABtbW0Z2Q+tDTPBMH4Q7TL9jaotGd2XQVnflPO8EWmRnHkzZDAbVpRvxK98eDPOut/Gk4OXGbxRylRdWtjtdmUsm81mU6pOAcBqtcadB06t5uZmNDU1oampSQnaamtr074fWjt+8NI7mAyEcLOlCDtuLcvovjjmjUjbInLmLUNj3mR77DcDAP79+SuYmg1ldF+Ue1QFb7H99GazGX19fbh06ZLymNvtVrP5RXw+H9xu97yMXmNjI3p6ejg5MK3YP//sTQDAb967VcmMZYq85A6rTYm0aTXGvAHAfbYK3FpRjImZEP7twpWM7otyj6puU1EUcfjwYfT29qKvrw+HDx+G0+mEy+XC2NhYRgoW+vv74fF4lGW45PVSE3XRBgIBBAIB5b7f7wcABINBBIPBtLdP3nbsLWnXK+/4MXBpDCajgIe2b076mK30GMszkMwEMvf+o/ThuZz7Fh7j2VAYACCIYsaP+2/WbMHR//c6/vEnI3ho+40sXMggvZzLybZP9SS9p06dQmVlJQBpzjePxwOHwwFBENDd3a1m84tYLBaMjc1fUqSnpwdA4kXvjxw5gscff3zR4+fOnUNxcXrXrlwo3f9+Sr/vDhkAGHC3JYy+H/am/PepHuNgwAhAwLM/+hEurU95d5QlPJdzn3yMPcPSZ4Jn6A08Nft6RvdZGgRMghGvvjuBb7b/ANaSjO6OoP1zeWpqKqnXCaKo7/6b6upqNDY2oqGhIe7z8TJvW7duxbVr11BampnJEYPBILq7u1FbWwuTyZSRfZB6700E8Mm/fBbBsIjvHqhBdQrj3VZ6jB1//UO86Z1Ge/29qLrFsoJW02riuZz7Fh7jP/vXl3Gm/zL+2HE7/uiT8ZMC6dTy5MvodF+G844bcOILVRnf31qll3PZ7/djw4YNGB8fXzJGUZV5O3XqFNxuN06cOKFmMyvW3NyM/fv3JwzcAKCgoAAFBQWLHjeZTBk/gKuxD1q5/+9nFxEMi6i5rQz33b5xRdtI9Rgr0w8YjHxv6AjP5dwnH+OIKHVd5ptW5xw9+MnbcXbwMnpeex/D3hl8YBPTb5mk9XM52bapKljo7u6G2WxWs4kV6+zsRGVlJZqamrKyf9I339Qs/uXnUqHCo5+sXLX9GjlVCJGmycVEmVrbdKHbN67H7rtuBAB885mLq7JP0j9VwVtNTQ2OHj2a8PmWlhY1m09IHucmZ9x8Ph+rTSklJ/5jCJOBEO7cXIpPfXBlWbeVMHKqECJNC4UzP8/bQn/0qdsBAP/6/BW8fGV81fZL+qUqeNu7dy+OHz+O48eP4/z587hw4cK8HznISie32w232w273Q6PxwOPxwOXy6Ws7kC0nHfGp/EPPxkBADTt/uCqVnjJC96HuMICkSbJWfH8vMytsLDQ3VvM+Mw9myGKwNEfvLZq+yX9UjXmLVGFpyzdX4o+nw8OhwM+nw/Nzc3znmP3KSXrif/3CwRCEdxrLccnP5i5dUzjMUUn/pwNs9uUSItmQ9KFlXyhtVqadt+Bp19+Fz984xqeff39jK6xTPqneoWFsbExRCKRuD979uxJVzsBzE0VIorioh+iZPxk6Bq6Bi9DEICvPHjnqs+rxMwbkbbJmbfVGvMmu6WiGL99320AgK8/9SqCvMCjJagK3lpbW5csWGhsbFSzeaK0CoTC+LMnXwIA/NZHb8VHtlpWvQ1y8MYPZiJtks/N1ew2lf2XnbejrNiE196dwMn/GFr1/ZN+qHp3OhwOjIyM4ODBg6ipqcH58+cBAL29vejq6oLD4UhLI4nS4ZvPDMFz7To2rC/AY7s/mJU2yN2mDN6ItCkYzk63KQCUrcvH1z77IQDA/z7/Bl6/OrHqbSB9UPXuHBwcVJapamhoUJaocjgcqKqqQldXl+oGEqVD/4gXfxMtw//zz9wJc1F25vnJUzJv7DYl0iL5wmq1u01ln/3ITXDeuQnBsIhDHc/zQo/iUhW8uVwueL1enDx5EvX19fOes1qtGB0dVdU4onQYnwrii9+9gHBExOe234TPfuSmrLUln92mRJomn5umLHSbAlKh3//8jQ+jtDAPz789jiNPsfqUFlNdsLAULrJL2RaJiHis83lc9k3j1opi/I/fuDur70t2mxJpm1xMlJ+FblPZptJCHN/7EQDA3/14GN9/4UrW2kLapOrdOT4+fzLBhVWf/f39ajZPpNqRH7yK7leuIt9owP/5zSqsL1A1O45q7DYl0rbZLHebynZ96EZl9Zemzhfw0mVO3ktzVAVvVVVVqKmpwZNPPomRkRGMjY1hZGQEXV1d2LZtGw4ePJiudhKl7J9+OoJTPxwGADyx9x7cs8WS3QaB1aZEWpftbtNYX679AH7p9g2Ymg3j9/7+OYxcu57tJpFGqEpDOBwONDc345FHHpmXhbNYLHC5XNi+fbva9hGtSHvfW/hv//YyAOCxXR/Ar2+/OcstksjdpiEGb0SaJHebmgzZD97yjAac+C07Hnb9DC9f8eO3/+7naG+8H5vNRdluGmWZ6ndnXV0dvF4v+vr6cPLkSZw7dw6jo6Npn6CXKFnffe5NNJ19AaII/M79tyrrBmqBnHmbZbcpkSbNZd60MWa7pNCEf/j9e3FrRTHe8k6j7sRPMcwM3JqnKniLnQrEbrejvr6ec7tR1oiiiP/V8zoOd70IAPi9j92Gxz/7IU0VzsytsMDMG5EWzYaiwVsWCxYWuqGkAN+uvw/WDetw2TeNvSd/ihff5hi4tUzVu7O5uRmXLl1KV1uIVmx6Now/PnMB/6vnDQDAwU9U4qu/dpemAjeA1aZEWheKaKfbNNbNliK0N96POzeX4tpkAHUnf4LvDV7OdrMoS1S9O0dHR3Hy5EkcP35cWV2BaLW99q4fn/2bH+FfL1xBnkHA0YfuxuFP36G5wA1gtymR1mmt2zTWDSUFONN4Hz71wRsQCEXwx2cu4M+/9xKmZ8PZbhqtMlUFCx0dHUo36eDgIJ544gkIgoC6ujrcdttt6WgfUULBcATf+tEw/qr7dcyGIthYUoBvPFyF+ysrst20hNhtSqRdoigq0/jkaSzzJistNOH079bgr7p/gb99Zgj/9LNL+PHFazi+7yOw31KW7ebRKlFdbSqrqqpCVVUVAOD06dPo6OjA3r17ceDAAXUtJIrjuWEvvvpvL+PVd/wAgE998AYc3/sRVKwvyHLLlsZuUyLtkrtMgexO0rsco0HAod134KPWChzqfB6ea9fx0Dd/grrqLWj+lTtwQ4m2PwdJPVXBm9/vR2lpqXK/q6sLbW1t6O7uhs1mU904ooVefcePJ57+Bc6/9h4AwFJswp/96l3YY79Zk92kCynzvEXYbUqkNbEXVVrsNl3ogQ/cgKf/+AH8j//7KjoH3kbnwNt4+qV30fCADb/78dtQWpidNZwp81QFb3v37kVzczM6OjrgcrlgNpuxb98+DAwMKFk4IrVEUcRzw16c/tEwel69ClGUrjz312zFl2s/oPlsW6w8OfMWYuaNSGtiVz7RarfpQpbifBzf+xF8/qO34Gv/9jJeeHscf9n9Olw/9OD3P27Fb993KzNxOUhV8Nbd3Y2enh44HA60t7dzbjdKq7Hrs/j+C1fQ3v82XoxZGuZX796ML+/6AGw3rM9i61aGKywQade8zJtR+5m3WPZbyvC9P/w4/v2FK/ib8xfxxnuT+N+9b+DEf1zE7g/diM9/9BbcZ62AIcvLflF6qAre7HY7ent7YTab09UeWuPGp4N49vX38e/PX8Ezv3hPuRIuyDPgIfsWPPJLVty+UX9Bm0weRxNitymR5gRj1jXVwzCMhQwGAb++/Wb82j034emX34Xrhx4MvunD9194B99/4R1sKi3Ag3dvxq/evRn2W8oYyOmYquCtpaUlbuDW29uLiooKLo9FywqGI3jlih8/84zi/Gvvof/SGMIxgc2HbirFQ/Yt+Nz2m3TVPZqI3G06y25TIs1RlsbScLFCMgwGAZ++ezM+ffdmvHxlHP/y8zfx789fwVV/AH//4xH8/Y9HsGF9Pn7p9g34pW034Je3bcCm0sJsN5tSoCp4S9RNumPHDni9Xhw/fhyPPfaYml1QDhFFEZd903jtnQm8cHkc/SNeDL7pw3Rw/hxFt29cD+edm/C5qptwx42lCbamTyZm3og0a1ae401nXaZL+dBNZnz9N+7GV3/tLvzojWv4vy+8g3OvXMW1yVl878IVfO/CFQDAlrIibN9qwfatFlTdUoY7N5egOF9ViEAZpPrIjIyMwO12w+v1znvc5/Ohr69P7eZJh2aCYbzlncKb0R/P+9fx2rt+vPbOBCYCoUWvNxeZUH1rGR7YtgE779iEWyqKs9Dq1cGpQoi0S5mgV+eZt3gK8oxw3LkJjjs3YTYUgfvNMfzwjffxozeu4YXL43h7bBpvj03j+y+8AwAQBCmg27axBNs2rce2jSW4raIYW8qKsbGkgF2uWaYqeBscHER1dTUsFgsAoLy8HADg9XpRWVmJjo4O1Q0kbRBFEddnw/BPB+G9Pov3JwN43x+QbicCeG9iBlf9AbzlncJ7E4GE2zEZBVTesB53bS5F9W1lqLmtHLffsH7NfBAoKyyw25RIc3Kl23Q5+XkG3GerwH22ChzaDfhngnjx7XEMvjmGC2/5cOGtcVybDOAt7zTe8k4rUzPJTEYBm81F2FJWhJssRbihpAAb1hdgw/r86K30u6U4H8Y18tm+2lQFby6XC0NDQ7BarRgcHAQAZYqQ4eFh+Hw+1Q2kxCIREcFIBKGwiFBERCgcQSgiIhiOIByRZgoPRZ8PhMKYCUYwPRvGdDCMmejPdDCM6dkIZkJh6bnZMCYCQfinQxifDsI/E4R/Ogj/TGjeWLTllBTk4ZaKYtxSXoxbKopx542luGNzCWwb1iM/L7c/GJfCblMi7ZrV8NJYmVRaaMLHb9+Aj9++QXlsdDKAN96blH6uTuCNq5N4a2wK74zPIBgWlZ6V5azLN6Kk0ITSojyUFJpQUijdlhbmoTjfiCKTEQUm6bbQZERRvgGFeUYU5htRmGdEUb4RJqMAk9GAPEP01iggz2CAySggL+bxtRQoqq42tVqtAACbzYbDhw/jxIkTAACr1bpm1zv97N/+FON+I77p+QkAARFRhAgpeyWKUH6PiICI6GNi9HlAen3M6+Tf5eAsFA3KsvH9n2cQYCnOx8aSAtxQUrDgthBby4twS3kxzEUmXVZrZRq7TYm0S55/UWuL0mdDxfoCVKwvwH22+csNhsIRXJ0I4G3vFC77pnHFN41rk7O4NhmI/sxidDKAsakgAOD6bBjXZ8N415/5NguCdOzyjAKMBgEGQYBBAARBgAAgOGvE/3zpP+c/LgCGBbcCEH2NdF/atvRLxbp8/POBj2b+H7MMVcFb7Jez2WxGX18fLl26hFtvvRUA4Ha7sXPnTnUt1KFX350AIABTk6u+b6NBetOaDNIViSn6Ji40GZWrmSKTQbrCMc2/6pGveEqLpKskc5EJpYUm6X6hCeYiEwpNBgZlKijzvLHblEhz5Ix4rnebqpFnNOBmSxFuthQt+bpgOAL/dBATMyFMzITgnwliYkbqxZEfl3uBpmfDmAlJPUOBkHw/ehuMIBjTqyQnL2InVJaJopQ9nQ3HaRAAQIA/mHhYTzI2amTCY1XBmyiKOHz4MHp7e9HX14fDhw/D6XTC5XJhbGxszRYsvLTpq5iemkJR8ToIggEQBIgQAMEghfQwQBAAUTAAEKTLhejvUmAkQBQMyu+IbgOCAYIxD4LRBMGQByHPBMFogsFogmDMi97mA8Y8wJAHGEzR303S/bwCIK8QMBUBpmLAVBi9LZKei308rwjg1WfaybO2c3ksIu2Ru03zcqjaNFtMRoOSvZsnEgGCU8DsdWB2MvpzHQjNAKFZIByIuY3+LHwsPAsxHIIYCSMSCUEMhxAJhyFGpMfkH0RCgBgGIhGI4RDGfV6YS9fDIEYAMQKIIkREu76UW8y7L0KEIN+HiFBhBQDnqv5fxqMqeKuvr8epU6dQWVkJAKirq4PH44HD4YAgCOju7k5LI/Vm/fgbWA8A48u9UuPyS4BCc+KfIguwfhOw7gbpdv1GoKgMYGYuofw8dpsSaZXSbcrM2/JCs8DEO8DkVWBqFJjyAtNjwLQ3+nv0dsYnBWeBaJAWvJ6W3UdTG0jlSK0HgGmVOw5PqNxAeqieKqS+vn7e/aamJjQ1NandrK6FvvAkfv7zn+Oj994rXcHFRvXK75Ekfl/4+oh0JREJAeEQEAlGf19wO+/34Nxrw7NAcEa66gnNAMFp6Xf5seC0dGUjm52QfvxvJ/+PN5ikIG79JsCyFbDcCpTdKt1abgUst0iZvTVKKViIk/InouySu03zGbxJgZh3GPB6gLFhwPeWFKz535Fup66p3IEA5K8HCtbP9QAZ86VeoEW3BUBefvQ2+rjRBAhGqYfIkBf93Tj3mGCM9kBJj4VEEYMXXkBV9Q7kmQqU3i4oPVzCXLsExHks+rq8HOg2XejChQtcVQGAeNsv49orExCtDwAmU7abk5pIBAhNS4HczPjSP1OjwPX3gcn3pKuvGZ8UJPovSz9X3PH3Yb4F2HgHsPFO4IY7o7cflE7eHJcnTxXCzBuR5gTXYrfp9WvA1ZeAqy9LP++/JgVs02PL/62xACjZBBRXAEXlQHG5dFtUFvO7BSgoAfLXRX/WSz+molXtpRGDQVy5VITtdzyov+/lONIavFVXVyMcTjhSkPTAYJg7ydZtWP71sUKBaDB3FZh4F/C9CYxdAnyX5m5nJ4HxN6WfN87N/a1gkAK5LdXAlhrpZ8MHpKumHJIfM8+bKIos/iDSkECud5vOXgcuu4G3nwPe6pMusCevJn79+huBcitQbpN6TUo2A6U3zd1ymEzWpDV4E0V2Ba1peQWAeYv0E48oSmMgrr0OvPcK8N6r0Z9XpPER770s/bj/P+n1+SXArR8DbJ8EbJ8ANt6l+w+KQtPcl0IgFEGhKbeCUyI9C0SX6ivKlfMyOA1c+jEw9Aww8kPg3ZekAfzzCFKAtulDwKYPSz0h5ZVA2W1SlyZpUlqDN2YRaEmCAKyrANbdD9x6/9zjoihl6i4PAG/3SbeX3dJ4uzeeln4AYN1G4HYHcMdngMqdQL7+ltGKDdZmgmEGb0QaIq+zXJSv4/PS9ybw6r8Db3QDl34yfxwzAJTcBGy9V/rZUiNdFDNI0x2uOkvZJwhA6Wag9DPAnZ+RHguHpHEYw88Cnv+QPoSuvwc8/x3px1QsBXB3/Tpwx69K3bw6IM8SHoqImA6GYcl2g4hIMROUuk11d1E1OgS88q/Aq/8GXBmc/1zpzUDlpwDbp4Bb7kvcM0K6ktbgTV4ai0g1Yx5w03bp5+P/VRpP9+bPgF/8AHjt+8D4W9Lta9+XBr/e9Tlg++eBW+7X/Px0RSYjJgIh5YuCiLRBzrzFDm/QrMAE8PL3gMF/Bt762dzjggG45WPSRe3tDmnsMHvFco6q4K2rqwsPPfSQcr+/v191g4jiyiuQxr3ZPgH8yhHgneelwO3FDmBsBLjwz9KP5VZgxx8A9t+Rqp00qCAavE0nngaciLJgRg9j3i67gb7TUuAmz5kmGADrJ6I9EZ8B1t+Q1SZS5qkK3pqbm1FbW4uSkpJ0tYdoeYIwl5X71FeAN38KXPi29GHmuwT0fBX4z1bgnv3ARw9K05JoSFG+dFU/E2LwRqQlM0rmTWPBWyQM/OIp4Kd/K33eySpuB6p+C7jnYWnoCa0ZqoK30dFRfP3rX0dFRQWcTifneKPVJwhSReqtHwM+fQx46Szw85PSeLmBv5d+tu0CPnFYmoZEAwrzpC+GGWbeiDRFHsqgmcxbKCBV3//0b6QeBkCaePbDe6Qehq0fZZfoGqUqeOvo6IDD4QAADA4O4oknnkBZWRn27duH0tLStDSQKGn5xYD9t6Ur0Us/Bn52QrpafeOc9FPpAD55WKqyyiK5ko2ZNyJtkYcyZH3MW2gWGPwn4Id/KU14Dkhzqu34A6Cmnlk2Uhe8yYEbIBUryAULLS0t8Hg8aGxsxM6dO9W1kChVggDc9kvSz+gQ8MO/kipUh3qln0oHUPs4cOPdWWmenHmbnmXBApGWyBdUWes2DYeAC/8CPPuEVJQFSFN7/PKXgO1f0OX0SJQZqoI3v98/L8N2+vRptLW1YWBgAE6nE0NDQxgYGEBZWRkOHDigurFEKauoBD73t8ADj0lXsUoQd16qTv3UVwDzzavapEI58xZk5o1IS+Yyb1kI3obOA09/RZq0HJBWN/jlL0vFV2t4PWiKT1XwtnfvXjQ3N+PkyZM4e/YszGYzGhoa0N7eDqvVOu+1Z8+eRWVlJcfFUXaUW4Ff/xvpw/D8X0hj4y78C/BSF3D/HwG/9CerNlFlYZ7UJTPN4I1IU2ZCWRjz9v7rwLk/m5uMvKgMeKAJ2PH7a2K9Z1oZVR373d3dqK2tBQCcO3cOXq8XR48eXRS4AcCePXs4lQhlX7kVqPs74ECvNCdcaBr44XHgbz8KvPJv0moPGVbEzBuRJslFRKuywsKMH/hBM3DifilwM+QB9/0h8F8Hgfv/kIEbLUlV5s1ut6O3txdms3nJ1w0ODsLlcsFisajZHVH6bNkB/H50wt+n/1RaUqb9t4HbnVLVakVlxnatVJsyeCPSlLkxbxkuWHj134GnDgET70j3P/ggUPsXwIbbM7tfyhmq3qEtLS3LBm4AYLFYYDab0dLSomZ3ROklCMCdvwb84c+BBw4BxnzgYg/wzfuBZ74OBGcyslv5qp7dpkTakvExb+OXge9+ATjzW1LgVm4Dfvt7wG9+h4EbpURV8FZWVrbk86dPnwYAWK1WHD16lNOHkDblFwM7/wx49KfSeqnhgDTJ74n7gaFn0r67guhVPZfHItKWjE3SGwkDP3dJwzNe+77URfrLjwGP/kRad5QoRaqCt9bW1iWfb2trU7N5otW14Xbgt7qAvf8IlGwGvB7gnz4HnK0HJt9P227kwdDMvBFpS0Ym6X33JeBbu4AfHAJmJ4At9wKNPwQcf85xbbRiqgsWnnzyyUWP+/1+7Nq1C263W83miVafIAAf+hzwR88B9zYCEIAX24G/qQb6/x6IqM+WyVf1HPNGpB3hiIjZsHR+pyXzFpwGer4GuD4BXO4HCkqBX/1L4A+eBjbdpX77tKapCt7sdjuGhoaU7lFAmhLEarXCZrPFrTol0oXCUuDBY0D9eWDzR4CZceD7fwz8/a8AV19RtekiBm9EmhN7PqrOvA2dB755H/CjvwYiIeDOz0oXhDUHAEOWV2+gnKCq2lSe+mN8fFxZVaGnpwft7e3zVl8g0q2b7cCB88BzLuCZ/wm89XOg7ZdhuO+PYIx8eEWblAsWJgMM3oi0YiparCAIQEHeCgOsyfeBc18BXjgj3S+5CfjV48Adv5qmVhJJ0rLCwsDAANra2mCz2XD06FEGbpRbjHnSvEt3fVaal+m178P4k2/gU/k3QLijBLjz0yltbsP6fADA6GQgE60lohW4NjkLAKhYlw+DIcXF3iMRwP2PQM9XpSw9BOCjjVIhVEFJ+htLa56q/G11dTX279+Puro6nDp1Cv39/dixYweOHz8Ov9+Prq6udLWTKPvMW4CH/wV4+DsQS2/Gutn3kXfmYaDj94CJd5PezIb1BQCAawzeiDTj2nXpfJTPz6S9+xLwd7ulYRUz48CN90iTgH+6lYEbZYyqzNvQ0BBsNhuGh4eV+d7kBep37dqF3t5ehMPsGqIcc8eDCG29H5f+4SAqr3VDePlJ4GIv4PhvwI4/AAxLj5eRvxxGJ2cRiYipX+UTUdqNRjNvSQdv02PAs8eBn50AxDCQv17KtNXUS9l6ogxSlXlzOp14+umn407Ue+7cORYsUO7KX4+Xt3weoT/oAW6uBgJ+4KnHgG/VAlcGl/zTimi3aSgiYnw6uBqtJaJlyN2mN5QsE7yFAsBP/xb4xnbgp38jBW5yQcJ9jzJwo1WhKnjbu3fvks/X1dWp2TyR9t14N/BIN/DgcWkqgMsDgOuTwJMHpdnU4yjIM8JcZAIAvM+uUyJNkIcxyGNSF4lEgBc7gb+9V1pSb8YH3HAn8IWzwP5/Asw3r15jac1TdYlQX1+/5PNHjx5Vs/mEjh07pqyT6vP50NTUlJH9ECXFYATurQfu+AzQ/d+keeGe/w7w8veAj/0X4ONfBArWz/uTDevzMT4dxLWJAD6wieNiiLLt2lLdpm/1Af/3T4B3X5Tur98EfOorwPYvMNNGWaG7CWeOHTsGAGhoaEBDQwPsdjsaGxuz3CoiAKWbgT2npLnhbvkYEJoGnj0mrZV65cK8l8pfEMy8EWlD3OBNFIGft0nzO777opRd/9SfAf/FDVT/LgM3yhrdBW9HjhxBQ0ODct/pdMLlcmWxRUQL3FwN/P5TwL5/Aiy3AuNvStVog/+srNCwtbwYADD4pi+LDSUiAAhFgFfe8QMAtpRFl6yaHgPOHgB+0CRNtHvX54D/egH4xKFFmXSi1aarywaPxwOfz6d0mcbq6emB0+lc9HggEEAgMJfd8PulEzQYDCIYzMxgcXm7mdo+ZV9Sx3jbp4GtH4PxXw/CcLEb+Nc/gtj9VYgb78LhgIBa03WE+wwYeC16pZ9i0akgiitsfcq7ikPNvlf+t2r2K+07xb2JIm6cDeDl174JQcV/mrp/s7pjrY7a/+8svU9S+lMRW2Zm8Y2wgIIiA3Y8W4ZIjx/C1ZcghGchGvIQ2flVRO49KM3gy891XdLL93Ky7dNd8BaPxWKBz+eL+9yRI0fw+OOPL3r83LlzKC4uTmfzFunu7s7o9in7kjrG67+AbZst2Hb132GaugZh5FlsALBbnlFkKpMtpLSYznYDKOOMkIK+kbmHxgu34oWtvwvv6K3AD36QpYZROmn9e3lqKrkvBF0Fb4mUl5fD6/XGfa6lpQVf+tKXlPt+vx9bt27Frl27UFpampH2BINBdHd3o7a2FiaTKSP7oOxK/Rh/Bgj9NUJXXwK8HiA8i0AggKGrfkwHI0qiQASkcTbJUpMOUpl/U50DW2HbxTTkDZPelyjinXfewebNmyEIK2+zRG27V/73oqp2q5TV9+jyfx+JRHDlyhVUfdCK2+XiobwCiDfeg2LLbbgvm/93lDZ6+V6WeweXkxPBW6LADQAKCgpQULC4eshkMmX8AK7GPii7UjrGJhNw2/3SD6ST757MNY3SIBgM4qmnnsJHH3yQ53KOko9xpfNB5PEY5zytfy8n2zZdFSzYbLa4j/t8voTPEREREeUS3QVvFosl7ti3eMUKRERERLlGV8EbII1h6+npUe53dnbOmzqEiIiIKJfpLnhramqCz+dDZ2cnOjs70dfXh7a2tmw3i4iIiGhV6LJgIXY5LK6fSkRERGuJ7jJvRERERGsZgzciIiIiHWHwRkRERKQjDN6IiIiIdITBGxEREZGOMHgjIiIi0hEGb0REREQ6wuCNiIiISEcYvBERERHpiC5XWFBDFEUAgN/vz9g+gsEgpqam4Pf7YTKZMrYfyh4e47WBxzn38RivDXo5znJsIscqiay54G1iYgIAsHXr1iy3hIiIiGixiYkJmM3mhM8L4nLhXY6JRCK4cuUKSkpKIAhCRvbh9/uxdetWvPXWWygtLc3IPii7eIzXBh7n3MdjvDbo5TiLooiJiQncdNNNMBgSj2xbc5k3g8GALVu2rMq+SktLNf0mIfV4jNcGHufcx2O8NujhOC+VcZOxYIGIiIhIRxi8EREREekIg7cMKCgowFe/+lUUFBRkuymUITzGawOPc+7jMV4bcu04r7mCBSIiIiI9Y+aNiIiISEcYvBERERHpCIM3IiIiIh1h8EZERESkIwzeiIiIiHRkza2wkGnHjh2DxWIBAPh8PjQ1NWW3QaTasWPHAABDQ0MAgLa2tkXP85jnltraWnR3d897jMc5NzQ3N6OyshIAUF5ejrq6OuU5HuPc4HK54PP5YLFYMDQ0hJaWFuW4AjlynEVKm9bWVrG1tVW5393dLTY0NGSxRaRWU1PTvPsNDQ2i0+lU7vOY556Ojg5x4Ucjj7P+jY2NiXa7XRwbGxNFURQHBgbmHWce49zQ2tqqHGNRlI57XV3dvOdz4Thznrc0Kisrw/Dw8LwIXxAE8L9Yn3w+H/bu3YuOjg7lmLrdblRXV2NoaAg2m43HPMf4fD60t7ejsbFx3jHkcda/xsZGVFZWzsuy9PT0wOl0AuAxzhXxsuaxj+XKceaYtzTxeDxKmnahnp6e1W8QpUV/fz88Ho9y32azAZC+5HnMc097ezv27ds37zEe59zgcrlQV1cHj8ejHDc5cOMxzh0WiwW1tbXw+XwApGMrf27n0nFm8JYmsV/wsSwWi/ImIn2xWCwYGxuD3W5XHpNPcJvNxmOeY2KzMLF4nPVPPoZutxs+nw82mw2NjY3K+cxjnDtOnToFj8eDsrIyNDc3o6enRxmnnEvHmcFbhpWXl8Pr9Wa7GZQmR44cQVtbW9wrNxmPuT7JX+rJ4nHWD/lL22KxwG63w2azobW1FXv37l3y73iM9cdisaC5uRl1dXU4duwYOjo6lg3M9HicGbxlmN7eEJRYc3Mz9u/fj4aGhiVfx2OuP3KXWip4nPVnx44dyu9ytmWp7jIeY/1pbm6GzWZDR0cHhoaG4PV6UV1dveTf6PE4M3hLk0RX7KlezZM2dXZ2LhrszGOeG9xu97wv9YV4nPUv0XGyWCzzxkQtxGOsL/KYNnn4g81mw8DAACwWCzo7O3PqOHOetzSx2WwJPwjijaMh/ZCvzOWMm8/ng9fr5THPEV6vF263WznO8nx+x44dg81mQ11dHY+zztlsNmWcauwYVp/Phx07dvBczhEejyfukJbGxkYAufU9zcxbGrW0tMxLwXd2di7bxUba5na74Xa7Ybfb4fF44PF44HK5UF5eDoDHPBc4nU40NTUpP/IHfVNTk9KVyuOsf62trThz5oxyv7OzE06nUwnmeIz1z+l0KkUpsQYGBnLuXOY8b2kmX60DQF9fH1pbW7PcIlopn88Hq9Uad7Br7GnDY547Ojs7cebMGXR2dqKpqQm1tbXKFTmPs/7JM+8DwOjo6KJjyGOsfz6fD0eOHEFFRYUyrrGhoWHRCgt6P84M3oiIiIh0hN2mRERERDrC4I2IiIhIRxi8EREREekIgzciIiIiHWHwRkRERKQjDN6IiIiIdITBGxEREZGOMHgjIiIi0hGubUpEtMp8Pp+yRI/dbtfdothElF3MvBERqRRvCbWl9PT0oK6uDnV1dXC73ZlpFBHlLC6PRURrTm1tLXp6epSFySsqKgAAbW1tAIChoaGUttfY2IjW1tZ56ycuxefz4S//8i9x5coVfOUrX2HmjYhSwm5TIlpzvF4vuru7lUXnAcDj8aC5uRkdHR0r2maygZv82tdeew1utxvf+ta3VrQ/Ilq72G1KRGuO0+mcF7gBUvbM6XSirq4upW11dnaitrY25TaUl5fD4/HA4/Gk/LdEtLYxeCOiNaempmbe/c7OTvT09Cjdpqno7u5eUcDX2toKm822on0S0drG4I2I1pyFwVZzczMaGhpSHnuWaqGCzOPxwGKxoK6uDp2dnSvaBhGtXQzeiGhNO3bsGLxeL1pbW1P+2/b2djQ2Nqb0Nz6fTxkf19jYCI/Hw4pTIkoJgzciWrPkIoVUKkVjdXd3w263p/Q37e3t2LdvHwDAZrPBbrfjzJkzKe+biNYuVpsS0ZrV3NwMu92OhoYG5TGPx5NU92myr1uou7t7UXery+VaUeaPiNYmBm9EtCb19PSgs7MTAwMDix6PDeYSaWtrW1GX6f79++eNuWtoaEBZWRncbnfKWTwiWpvYbUpEa1JjYyMaGhoWBUwLg7lEVpJ5a29vX1QsYbFYYLfbWXVKRElj8EZEa86xY8fg8XgWdVW63W5lzdGluN3uFc3tligw3L9/P9rb21PeHhGtTew2JaI1Rx7r5nK5AACjo6NK4JZMNq2trS2lMWo9PT1obm6G2+1GZWUlmpqa5j0nj4Pbu3fvom5VIqKFuLYpEVGKGhsb2c1JRFnDblMiohSsdDksIqJ0YfBGRJSCM2fOsFuTiLKKwRsRUQpWMrcbEVE6ccwbERERkY4w80ZERESkIwzeiIiIiHSEwRsRERGRjjB4IyIiItIRBm9EREREOsLgjYiIiEhHGLwRERER6QiDNyIiIiId+f8B/z8uoQfUkXoAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Averaged xy-plane of concentration profiles:\n", "# pip install gridDataFormats numpy matplotlib \n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from gridData import Grid\n", "from matplotlib import rc\n", "# Set up LaTeX style\n", "rc('font', **{'family': 'serif', 'serif': ['Computer Modern'], 'size': 12})\n", "rc('text', usetex=True)\n", "# Load data and average over xy-plane\n", "Li_conc_data = Grid(\"Li_out_bion_conc_species_1.dx\")\n", "pf6_conc_data = Grid(\"Li_out_bion_conc_species_2.dx\")\n", "av_li_conc = np.mean(Li_conc_data.grid, axis=(0, 1))\n", "av_pf6_conc = np.mean(pf6_conc_data.grid, axis=(0, 1))\n", "z_axis = np.arange(Li_conc_data.grid.shape[2]) * Li_conc_data.delta[2] \n", "# Plot averaged concentration profiles\n", "plt.xlabel('Z / \\AA') \n", "plt.ylabel('xy-averaged electrolyte concentration / M', fontsize=14) \n", "plt.plot(z_axis, av_li_conc, label=r'Li$^{+}$') \n", "plt.plot(z_axis, av_pf6_conc, label=r'PF$_6^{-}$') \n", "plt.grid() \n", "plt.legend() \n", "plt.tight_layout()\n", "plt.savefig(\"average_concentration_plot.png\", dpi=1500)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAANIAAAHPCAYAAAAmpoSzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7FElEQVR4nO2dd3xUVfr/3/feaemThA6hJFSRFoqCHRN7N4Dd1VVQV9ddXUF2v7vqrrtIdC27rj8Jtl0rEHs3wYYFCQlNOpkAoSWQycykTb+/P27uZBKSEHRIgnPer9d9kbn3nnvPXO5nzjnP85znSKqqqggEgp+F3NUVEAh+CQghCQQRQAhJIIgAQkgCQQQQQhIIIoAQkkAQAYSQBIIIYOjqCnQmwWCQffv2kZCQgCRJXV2dn4SqqtTU1NCvXz9kWfwOdheiSkj79u0jLS2tq6sREcrLyxkwYEBXV0PQSFQJKSEhAYDyXbtITEzs4tr8NFwuF2mDBoW+i6B7EFVC0rtziYmJx62QdI7XrukvFdHJFggigBCSQBABhJAEgggghCQQRAAhJIEgAgghCQQRoNuZv/Py8nA4HFitVkpLS5k/fz5WqzV0PDc3N/TZ4XAwd+7crqmoQBBGtxJSbm4us2fPbiaUW2+9lWXLloWOA8yePRuAwsJC5syZw6JFi7qkvgKBjtSdcjZkZ2dTUFDQ5r7k5GTKysqatVCSJNHRr+ByuUhKSsJZXX3cOmRdLhdJyck4nc7j9jv8EulWYySr1Up2djYOhwMAm81Genp66G+9y9eSwsLCVq/n8XhwuVzNNoHgWNCthLR48WJsNhvJycnMmzePwsLCULfNZrO1WsZqtYaE15IFCxaQlJQU2n4pAauC7ke3EpLVamXevHnk5OSQm5vLsmXL2hSJTkpKCna7vdVj8+fPx+l0hrby8vJjUGuBoJsJad68eaSnp7Ns2TJKS0ux2+1MnDix3TJtiQjAbDaHAlR/CYGqgu5LtxGSPgbKysoCID09neLiYqxWK/n5+aGxUkscDkebxwSCzqJbCak1Q8KcOXMATVhWq7XVsZIuPoGgq+g2QsrKyqKkpOSwMVFxcTE5OTmANuYJt9Dl5+eHfEoCQVfSrfxIDoeDBQsWkJqaGrLGhTtoQXPK6l25oqIiFi5c2OHrCz+S4FjRrYR0rBFCEhwruk3XTiA4nhFCEggigBCSQBABhJAEgggghCQQRAAhJIEgAgghCQQRQAhJIIgAQkgCQQQQQhIIIoAQkkAQAYSQBIIIIIQkEEQAISSBIAIIIQkEEUAISSCIAEJIAkEEEEISCCKAEJJAEAGEkASCCCCEJBBEACEkgSACCCEJBBFACEkgiABCSAJBBBBCEggigBCSQBABhJAEgggghCQQRAAhJIEgAgghCQQRQAhJIIgAQkgCQQQQQhIIIoAQkkAQAYSQBIIIYOjqCoQzY8YMZs2aRXp6erOVzIHQSua5ubmhYw6Hg7lz53ZyLQWCw+lWQiopKSE/P/+w/Tk5OSxbtozc3FwAZs+eDUBhYSFz5sxh0aJFnVpPgaAlkqqqaldXQic3N/ewFiYvLy8knOTkZMrKypq1VpIk0dGv4HK5SEpKwlldTWJiYsTq3Zm4XC6SkpNxOp3H7Xf4JdKtxkg5OTnNPhcWFjJp0iQAbDYbDofjsC6ffl5reDweXC5Xs00gOBZ0KyHp4yDQhGOz2cjMzAx9bg2r1YrD4Wj12IIFC0hKSgptaWlpEa+zQADdTEjhLFy4MNSla4+UlBTsdnurx+bPn4/T6Qxt5eXlka6mQAB0M2ODTklJSYfPbUtEAGazGbPZHIkqCQTt0i1bpEWLFpGRkdFsX3i3LxyHw9HmMYGgs+iWQiosLGzVj2S1WlsdK2VlZXVSzQSC1umWQrLZbK22MvPnz29mocvPz+/QOEogONZ0SyGlp6eTkpJy2P65c+ficDjIz88nPz+foqIi4YwVdAu6lUP2WCMcsoJjRbdskQSC4w0hJIEgAgghCQQRQAhJIIgAQkgCQQQQQhIIIoAQkkAQAYSQBIIIIIQkEEQAISSBIAIIIQkEEaBbTuw75qiqth2PHK/1/oUTnUIKBLTteOR4rfcvHNG1EwgigBCSQBABhJAEgggghCQQRAAhJIEgAgghCQQRQAhJIIgA0elHEg5ZQYSJTiEJh6wgwoiunUAQAYSQBIIIEJ1dOzFGEkSY6BSSGCMJIkx0Ckm0SIIIE51CEi2SIMJEp5BUFYJBkKSOndsaP6dsR8q3VVa0SN2S6BRSey2SJP28l1UXyM+9RlvlRYvULYleIbX2oh7p5Q8fW8ly81blSGUlSWsF9fMkSbtGR8vq5wkhdUuiU0g+H3g8h4uhLcIFEE64GNpDF2Br1zjaOvh8Rz5X0OlEp5D8fm3TUZSml1nvVunjqI500WS5SVD6dYLBpn87co2O1iG83oJuQ3QKyevVftklCQyGJsODojSdEy6EYLD1LpWiNO+ehbcuenm9O9aaAPQWTa8DaH+3Vwev96d/b8ExIzqFpI+RFAVVUcBk0l5oRWneCni9oKpI+ovs9zcJxmAASdLKG43aZ11IkqSdqwsoGETS9+mCMhiaX0P/rIs5/J6ShOTzia5dNyYqhaQaDKhxcagxMagWi/ZZ0rtnKgS1TVYDSF4vuN1QWwuBAFIwiCpJYDZDXByqxULQZAZZ1vbLslZeDSIDkt+H5HajNjRAXR34fEigiSc2FmJjCZrNqAYjqt5FVBvrIIGsBpE8Hq0OdXXaOYJuR7cU0rx588jIyAAgJSWFnJyc0LHc3FysVisADoeDuXPnHvX11dRU/Ck98aoGfAEDAa902FBEH7IYjTEYEuMwx8Qi1bhQvV5Usxk1IRGvYsEXNBDwyqHGKhxFAUWxYLDEYImLR7ZYkOrrUQE1NpZAbAJeDPgDBvwNh9dB720ajWYMCbGYYuPFGKmb0q2E5HA4OPvss1m+fDlWq5WSkhImTpyIvvB6bm4uALNnzwagsLCQOXPmsGjRoqO6j1O2Uue0EAxKoWFIW0iSjCybMJmMxFljkNUA/qBCvduAzyd3yJYgSQYMBgMxMSbMqQmogM9voKHGgN/fsTpIklYHf1zqUX3X7kh+fj52u52UlBRsNlurP4ZtndPWfofDQWFhIQUFBc3eh47cKxJ0KyHNmzePWbNmhVqczMxMCgoKQscXLFhAWVlZ6HNWVhbZ2dlHLaTKgwZiYqTQcKY9mtw+EtWKKdTz0lugjlquJQmcTgVFiQkNoXQBdaQO2tBMoqHBdOQbdmMcDgdLlixh2bJlgPZ/XlhYSFZW1hHPmTRpUptlCwsLsdvt2O32o7pXpOhWQsrLy6O0tBSbzYbNZiMrKyv0pW02Gw6HIySycNp6OB6PB4/HE/rscrkAbbgT7hcNp7X97e0L33+k84503ZbCDP+si7GuruW3PPa43W68R7AWqqqqGVTCMJvNmM3mZvsKCwtJSUkJfc7IyGDZsmXN/v/aOsfhcLRZNicnh5KSkmY/vB25V6ToNkKy2WwAlJSUkJ6eTnp6OnPmzGHGjBlkZWWFjrfEarXicDhaPbZgwQIeeuihw/bX1HDE7lQ4HW15OqNsff1Pu9ZPxe120zMmhtojnBcfH09tbfOzHnjgAR588MFm+4qKipr9GOpdro6c05GyR3uvSNHthGS1WsnMzARg4cKFDBkyhOrq6jbLpaSkNGvOw5k/fz733HNP6LPL5SItLQ2Xq/Uxe7jl+aeEyoW7on6qTUA3crQVxdTZQvJ6vdQC9wHmNs7xAI/W1lJeXk5iYmJof8vW6JdMtxGSzqRJk0J/661NYWFhm+e3JSJovWsBWouk+2NbIzxmNLz7pQusZRBDR8rq6C1ha1bslrGqrbVIDQ2t1/lYEwdY2jimv0SJiYnNhNQaGRkZFBcXhz7b7XbS09M7dE5Hyh7tvSJFtxFSW1/QarWGxkut4XA4jvrh2O1gaXwr9BagrYDrI8WJhkcHtUVbrQs0BTe01/3TfbOguZO6Apm2E3wcjWdr5syZocE/QGlpKTNmzAC0Xkl6enqb50yaNKnNskd7r0jTrYSUnp6OzWYLde1AE8qkSZNIT08PiaqlcI528Fhbq7VI4a1LeHQQNAmoLWNBy9ZCF1S4IFv6ltoqqx/T66BfQxdQeMsWZjvpVCIlJKvVyrx588jLyyMlJYXU1NTQ/9+MGTNYvHgxmZmZbZ7T1v7CwkKWLVtGSUkJ+fn5ZGVltXuvSCOp6k8ZDRwb8vPzKSoqYuHChaHPixYtCllidGes7kfKz88/zG/QHi6Xi6SkJObMcWIyaV0QzekKcXEqcXGaGPQgBLe7yUnaXouhKGCxaOUtFu3lr63VAxlaLxh+zZZ1MBi0sVBdHTQ0NPczeb0uFi1Kwul0HrEbFQn0Z/YIbXft3MD90Gl16o50mxYJICcnB7vdHnK8VlVVNTNnzp07l9zcXPLz8wHNKnO0PiSAgwebunZxcdCnb5BTTrAzqHo1pmADVX3H8/3ugWz4UcbhkAgENHHorZduitYFkJSkMmq4jwkJ20i1b8ab1IOyhEl8XRTH3r1QXy+FWhc9nA+ahBQbC2lpQU4ZX0O6swizx4lz1GiKKoaxZl3zOnRVYINE2y3PTzRK/qLoVkKCpqiFtgj3TIeHDh0NDof2q2+xQP/+KhemFeH/+928u3YNNX4/I00mLv3TQyjj7uHTzxScTu1VaS0EKCkJJoyu45TyZ9n45D/4wOXCAGQPH8F1T+TzzGcjOXCgqUvWsiUymaBXL5ULhm7C9MTv+fDbr3AFAgw0mTjn9t9imfI33vvQSFWV1GYQemdgoO2Xpdu9RF1AVEZAVldrm9utMmagndoXHuDDVT9g93rxBYNscLt588E/Mq3mLazWIDU1cOhQU7nqaqiq0gQZG6cy3lnA1//8G2uqq/EEAtQFAry7eRMH7r+Ok0ZW4fGoOBxNZaqrNYNHVZXWfRueVgP5D/P+l4Uc8vnwBoPscLt546nHmGh7jh6pAWprm8p1BfIRtmgnKn9M7HatS5aYqDI8ppQfvyrEB/xAf3aRyiWspzIQILjiLZIGXYrTqbTqv4mNhR5WH4aVS9jtclGDzAecyCDsnMQeNq0tYbxhB8FAMlVVymFOYEmCmBgYZt3Pjk/fxwP8SC/W05+LWYcaDOL85A16nnUjtbUGampEi9Rdicofk+pqFbtdpa5OQnY7qQ0GUeJTqRh2FbvMw1DHzASgBpWGOj92u3a+w6E2tija5+pqlWDAj6PGCUDsaTezjXT8U24ioMTjBnxuHzW1Wpnqaq28w0GofE0NKG4X1X4/ssGCY+JsSklDmnZbYx3AXeenqkrl0CEVp7NrbEOiRWqfqPwxcblUDAaV8nKJne6h9ExIpNpVxW/6r2H34H7ErHwXP2CxDsNWbsLh0LqB2rBabRznqHg8Epu2W7h5cCYSn6B8/xIPZM2kl1RCRaCWvn36Umrvzb59Mk6n2qxF0uYVquzfD9tdg0hL7UnF/r3MMBQw8cx0emxchhtI7jua7bstVFdDfb3aZdm4ImX+/qUSpc/Ai9/v5cCBAC8uH8iE3zxEoiSx78vPUQpeIVhTw/gJU1jd/1esXSfR0OBFVb2oqg9V9QMeVNWL2+1l1Q/wxZDfceq4TM2kVvgalQUfkmKx0P/cW/igZCAVFX4CAV9jeW0DD4GAl8pKPy9/lMrAOxeSajBQ+cMPxH/5Op6DBxk1chSbx8xm9RoDdXVaHaBrpporR9iinW7lRzrW6D4RqEALegliNpu54hKVe85cQdJrf4etW1Gvu4Wvrb/m0dcGsG2bB9BbIwOSpKCqAcAPBACZQYPM/OHmQ5zveYngC88Q7DuA2hvn80xxFkveUqir06eHK0iSobFV0csHMRiMnHeOwvwLi+j57iMEin5AyrmKNRl38shr6axb7wWCjXWoB3p2uh/pOSC2jXPqgVuIbj9SVApp4sRqNm2KpaHBAwSQZSNpaRbGjJFISACbDTZt8lNTowe2GRk82EzmeJV+fYPsr1AoWi2xe7cHvYWIj7dwwglGhgzRwnjWr1fZudPd2ILJxMaaGTNGYezoIJIMGzcrrF0boK7OjSYSA/37Wxg7VsJqhV274Mcf/bhcTXUYMMDMmNFOPv40tdOF9BLtC+lXRLeQonKMlHfWf3jzzN/x7zwTNTV1BIP17NpVz65dClpvN9C4KYCJc84xct/kTzBtfxX1izVYRp2I+w/38pf8yXz9dQDwUFvrZNUqhVWr9N5yAK0lU0hOtvD7m1ycH3yW2h8+ArebvtmX8c5Zd/PYs7EcOlQDeNm7t569e8ProLdCZk4/3cjcM7/GsO0FPu7k5wVijHQkolJIbz32f1x66UYOXvkci18yonWzgoDeBZPR/fXDh5m5K/MzyvN+ze6DFQCoW7bQ75OP+Ouf3+HXe8+ktFSPJPWhiafpGrJsZMbFbk7dci+FH7+Mp7EDIK9Zw1lnrsB+1Zs89oyRYFCvg7/xGnodZAYNMvGbU1dS/cJNbNyz69g+nDYQ5u/2icofkwCw6sNlXD1wBX36mDn891YfExk5aYpKjy+eZPfBCowoNIy4jUQM7G2ox/zGHznndDdgbOUumhisVhPnD9jAji/fwqOqBGIzsPQ+lSDww4ovuCLhfQYNar8O48YpDF35NKV7drUZ73asEebv9onKZ+AimRq/n8QkB4kJ4ZFi+muh2aFkWWFEup+D+7cTBD5XzmDh1nI+UM4kAFTYD9C/nx+DQQkrL9EUmSaRlCST1vsg9vpaakjk3/UjeajCykH6UR8IYDYdIiUlPJJNIfz1lCQDgwcGsVdtB2CVcvIxfDJtYzjCFu1E5TOwUk0iUOPrSV09NL3Eeiug7VNVcNQpJFtikYCzAisY3vckeu//AYDe1l58fshEMKiNhXQrnoYmKK9Xwt9gwgQk4+K6mC24ghL9PfswAV56UlND6J5a905uVofaehmrMQYVmBZYyUfH6Lm0hwhabZ+obJGCwIlnnsunO07AbtfFo5m3m1okCVUN8sVXCjHX/ZEkwI+PXvu/QcVHT6OBhgvvZmWxoVFIernwDo9EZWWATw5NY9KUafiB1IZS0j078AJjJk/l8+ppHDgATa2Z0qwOEOS771Q8V8yjtywfMXfCsUJ07donKp9B9uQzKT/rn7zzTQoNDT6aXly9o6L/HWT9epXHN+Vw3oMvMHHIEHr36MGoocOZetPDLK28nB83NWZnDYnAgDZm0kTp8/l4fkki269YwjXnX0xaz5707tuX7ImnUnPxUyz9qh8ul7eN8gZAZdu2II99fx7THl7CSRnDOvVZ6YiuXftEpR/p+qsq+eq7ZHbv1p2iCqmpBvr1kzGbJQ4dCrBnTwC/3wdImM1mJk1SmD7FRf9YOxX1iXyxJomiIpW6Og8gYTIZ6ddPITVVwuuFffv8VFXpJmyZ3r1NZE8Pkjm4EiMBfjzQi+UrjOzY4Uez1EmkpJjo21fCYpGprg6yd28Aj0cTmdFoYtx4A6dm7uPJRQM63Y/0IZoLuzXqgAuJbj9SVAoJDgDxABiNBs4808Cd525l5MrFKF47rgmX8HrthfzvFQMVFU1RBYpibFw4QsXn0/1EEn36mLjpGi9XGN8hafNnyAk92DRlDk++m8HXX/vwh2bjyZhMCpIEXm8AVdWC72TZwMknG/ntFbsZX/wsSu1+6kafxbuGmTz3XzPl5Xp0BShKPYFAr04X0ie0L6TzEEKKQiHtBpIAA2efbSb3pP+y8T/3YHM6CaKlnbriokt5Y9zr5D6uNEZAqGiCCvcTySQlWfjTXS5OW/NrvvzwXXSP0uCYGE565A1ufv0iVq500+TkhaauoAwYmDLFzBMXfkD5f2azpbIS3XRx0amnseLCD/nLIxacTndjOQcwqNOFVED7QsomuoUUlWMkXQzx8QoXT9zDljefxOZ0spPh2BiNG1j2wbtc6nuJUaP04bQeui2FXUNi2AiZk/e9xBeffogTia1kUE0PdjY08OOjd3L1uZXExRloEmC4ZRAsFpnzp1VT+c6jbKmsZC9D2MYovMD736zg9N2PMX4cLerQ+YSPIFtuImg1aoWkERMjMWyQi3rbVnyGJLaOuJrXpPHUjb2FIBDYUsjIoeEz6Vo23hL9+wSw1G7E6/fTMOIa3jadRuGQ3yFZelC5p5xxPUvRsua2ZiRWsVgkRgyppW77enySwp5xt/A6J1I1cR5BoGZdIWNH+FCUrv2vEla79olqg4uqSiiKAgE/waATx9ZCZGKxr99MImA2x+L2hr8mLcUgoSJhbhzr1G4tIMg4AmXbcFOFEQgY4hszCbXeg9ZSghlQA34kNUDFuveQScJevJRUIM4Qg9snddk8JB0Ra9c+UfwMVFwu+H5HP4aPHY8ZmMW3/B8FDGYP/RQF+7hr2LRF8+W0TpDtO2Q8E3NIBdKo5E8UcDXfYUHlxNPPomB9GlVVbXfJ6uokvvsxmRFTz8AAXMIP/IXPGEkZvQD/2b+iZL0ei9d1CPN3+0SpkPSoAy+vvpuA66aXOXfMWBIAEzCyRw8m3PY3XthwBjt36iJo2TJprcyO7QH+vS6b8//yOMNNJiSgN3DGqaez78xHeO+LxEYLX3i5puv4/T7e/sjC1gsWcdHUaSSjjTmGJyRw6q3387+dl7B5S2t16FykI2zRTlRa7QyGQ/j9MeiBpRkZZq65soELJ+3B5LVT6hrA6x/3puBLiZoabb6RosgkJhoxmyUaGoI4nXqkNlgsJs48XeLGy6oYmbwbD7EsX9eX1z9IZONGX6OZW8JiMZKUpHXTHA4Vr9cXqkP//iauusLD5afuI8Zfyf76/rz2aW8++VzBbtfOkySZ+Ph6amp6dLrVbjW6w+BwaoFJRLfVLiqFtODBfSx9tw9r1njRxWA0GklKkjEatSyptbW6AGR69DBx3nQfV11UTVpCFZWeVF7/rCfvvQeHDnnQJ+bFxRlJSIBgUMLhCDQKRRsDjR1rYOb5LqafZMcs+1m5oz8vLYll9WofgYBWB0UxkpSkYLFoabpcLl/jbFyJpCQT2dMDXHr2Hq6/c2inC6mE9oWUSXQLKSq7dsP/ewr/uekbJk3SzdI+fL46Dh2qYf/+GmpqalBVTSBJSQp33+TgPuk2Dv16EB9dPobyawYwr/4W7v51LQkJ+gp6HurqajhwoIbKShdebx26SCdOkvn3VV8w7q1TWHnZUJZfMpJ+j4/k2ZkfMe1k3XjsIxCox253sW+fC6fThapq/qeYGAOzb6jnocQ/4J47trMfFyDM30ciKoW0qqyMqkev5VcXVJCQoC/7EqTJaao7XmWmTYXzqxfy0ZL/YvP5aAB2BoMsfeO/5NQ9wZTJoAeXHr6pJCQYmZ1VRsXTN1O0dTN2wAUU79nLtn/cyO0XlpGSoosx0GLTuoSTJkvMkp7h4//9hx2dvUBSI8L83T5R+Qy8wNbyck6K/4E+faClAUAjiNEoMWW8h+rP36EBWMl4FnI2PzAOH7D3g1c4JbMWg6Htx9izJ4yJX8+evXuoJokXOJknOYc6DJRW2RndUEj//tBy+oWGtpzkhDFB6r94i1pV5UdGR/BJdByRRah9olJIPutELVgnUIuxtcmtAEgEgypBZPyKhAzEjpqFh0SkETMIoFDn9RBn8bexUoUWweD3S0hmAz5VxRKXgifldIIxA/D1no4K+H21xMbo57deD78fghbtdY0ffv7P+OY/HSGk9olKF0CMo5j4hARsNSM4cEBFH8s0b5lUAgGVzTtMXDRsAmzfxtDNf2EWfem39WMMBEgZdzJrt8Th8+ldQbXFNQI4nRI764YQm5SExVnGRXWv4MVIYsMuLGYzFdJo9uzVzm2OnrhfZcsOhfihk6BoJf22PX5MnsmREA7Z9onKZ9BHljnzzodY8uN4qqv1+Uit4eebbxQOXvB3pg4eTDw+RrGbJNycMfpE9p7yN77+Xk+eAod3EVWcTi9L1o3mgtvnkyLLDGIfQ9lFT0nivNvnsWz3Wezb56WliJtaKD9rSmDr5PlMP+EEzF0Ubyccsu0Tlebvt+a9x2vbs/ngIxW324c+Z0iStFmqmtlbbyEMDB0aw+9urubsfS+g7vwRT9Iwvsm4mWeW9WLzZh9N2U8VZFlunDGrT7MAkymGCy+Q+e0pq+lf9DLe2gYqJ+Twv53TWfaOEpbbTosI167RZLAAmQED4rjzFhfTD77AlP/8odPN3zuBtu7mAgYT3ebvqBRSv34HOXgwNhRxkJRkZtrJMhMHHyQ+VmW7swfLPzewc2cDmiAkYmMtDBgg06OHhMsVZPfuAC6XJkJJUhg61MIZJ7lJt1bjMcfy3fpkvv3WR329NgVDkgz07Gli4EAJRYG9e4NUVPjx+bTWLDbWxMknGThpmB1rvJvdtT357AsT27d70Fu8mBgzffrUUVaW0ulC2kP7QhqAEFLUCYnQ76tCcnIMd1zv5LrKv1K86iNq3A2MTe6F/8anmPfWNFau9KDlq2tqMZrmJsmAiSmTjTxwWTGp+b9jbUU5sSYT0yaexZLhj/PPRfHY7XU0tXDh0zK0a8TFxfLra9zcpj7Gxi/e4GB9LSMSk0m8KZc/Lj+PggIvoDt+a4DBnS6kfbQvpH5Et5CitHurv8RmLjnHz0X77uft/OdDHbSCffsY/dhM7rn3c+4sHUrlQT2UJ7y7pY1p+vUzcO+lm6h7Ooei/XtDd9i980XOu8bIxrOf5LVlBprGUbqPqClvXdZZQa4JLuD95x+hvnFvxf79pD98Fff+pZBtWzPZtTt8cmHnE8kEkfn5+djtdlJSUrDZbM1WYTzSOUe7f86cOcyYMYP09HTmzZvXbJXzSBKVxgZdBElJCpefVMbWj5fgBXaSQjkDUYCNlRWM3v4iI4aH26sOn0YxdpzM0NX/YvP+vShAKYNowIIf2Jz/IpdOqyAhwUC4byhciBaLzKWnHWLXm4toACqJp5xBmIGy2loGfPcvxo7RsxS1VofOIVIOWYfDwZIlS5g9ezY5OTlUVVVRWFjYoXOOdj+AzWYjOzub7Oxs5syZE4lH0SrdqkUqLCxk0aJFZGdnk56eTkFBAZMnT262Vqy+sjloD7y1X7OOoRATIxFramCv14MfIwWcwn5UZiipjAqsoa72AH16+dE8JXo643ATt4H4mCBu6lGBvXETeLluAGNiDWTXf4TL62GE+RDx8f2oqVHQk5yET1e3WBQSY9y4/D6CSHxpPJvNvgCXmwZwovdbHDUV9O7vbVwFo+umUnTE/O1yuZrtN5vNmM3mZvsKCwtJ0WY6ApCRkcGyZcvIyso64jkOh+Oo9mdlZTFjxoxmC3ofK7pVi+RwOCgsLGTOnDnMmTOHjIyMw0QE2oLNs2fPJjMz82f9ytTWqpQ7e9LLEouMj7nKt9xiTGSCugEZMHpicda0TNoY3iIE2XdAIdGajgykNazjdwaZ6zyrSMSDNT6BqoNGPJ5wc3a4ECXc7iC2yiT6xMQDKrerhdxo7MO0wCrNCRxIwFVrQBvKdt2EBQVQJKn1rfGctLQ0kpKSQtuCBQsOu05RUVHohxAIdcU6cs7R7gftncrPzycvL4958+b9zKfQNt1KSABlZWWoqkppaelhK5wvWLCg2b6srCzy8vJ+wl20r11Xp/JxUV8yrr4dC2AP2Onrew130M/oIUP5ceI9rNvQ9NI3+fH1PHhBtm5TWT3sFsZmDMMXDGL1v0tDYC9GYFjOrbyzfjh2ezCsvIHweAC3W+Wz75Ppc8P9xAN2fx1DfM9RG/AxtFcfys/9Ez+sVsLq0EX/ZQZD+xtQXl6O0+kMbfPnz++auoYxd+5ccnJymD17Ng6H4ye+L0em2wmpLWw2Gw6Ho9kvj07LPvaR0V5kVfVT8IXEq+Y/c2Xui2SffDLTh43g8jt/j+fm9/hn/lAqKwNhZQxoU/+M6IKqOuTnyTcGEbjjQ3Jm38709Aymn3EmFzz4PK/GPMRHhSaaWjSlsayJJjEF+O57eKb6Ni56fBnZZ5zBWUOHcsmtt5Fw1/s88u4Eyvc0LRHTZb1xi6X9DUhMTGy2tezWgdbtcjgcoc92u5309PQOnXO0+wsLC5kxY0Zov9VqpbS09Oc9hzboVmMkgKVLl5KSkoLdbqe0tJSFCxcCHNb861it1mYPMRyPx4PH4wl91vvwI0fGsn27hUDAj9Pp4z+LTXw+6kYmjL2WhPgg20tl1rwps3+/LiIjAwcaOPFEiR49JPbvV1m/XqWiQhuzrFvn4/aFGUyc+G+Gnx+gtgbWva+waXOQ+nofoBAba2TkSIURIwBVYvMWla1bgzQ0BKiv9/G/V4ysHH4lmeMvJfnEAGW7FdZ8orB3r79x7Vkj/foZGD7cz5df/uzHfPQYDLQRVMjRJJSYOXNmM8tZaWlp6GW32Wykp6e3ec6kSZOOan96ejqzZs0K7S8pKQm9T5GmW/mRdLHov1B5eXkUFBSwbNkyCgsLyc7OpmV1MzIymDdv3mHdQIAHH3yQhx566LD9Jf9YzLLq68l7QaGqykdT8nsZSaIxskFPyKhw2mlG7jh7HaPL/ovxkw+QTjmVndnz+ftrI/jyS31yYBBtaUulsY5NrUiPHgZ+dWUtORnLsS75F6rLgeHm37DMfQP/zjOxf78X3fGrXUOPrtATSCpMmWLkzvO2MGzfi5yU989O9yM5e/cmUW69A+MKBkmqqOhwnQoLC7HZbIeZqidOnMjixYvJzMxs85yj3a+bxR0OB+np6c3G3JGkWwmpJQ6Hg+TkZKqrq1m9enWrQkpOTmbhwoWtCqm1FiktLY0HJYmLc37F8ynPsPgFCZ9Pf5GhefJGhaFDzTx1SzGOp2eyfc/uRrlAWmoqGffnc/uLp7NpUz1Nwgk3CigYDCauv1rlN8zny9eepjbgRwXMksTZ517Geyf8j8f/n6kxCWV4Akq9K6eQlmbm8Tu2ob6Qw5rtm1lA5zk/Q0Lq3799Ie3dG9UO2W41RsrPz2/2WR8P6U1+a+i/NK1hNpsP67cDuFWVVe+8wkX9i+nRQzMaNM+kqv0tSTLTzwjQY9lctu/ZTdKANKrHnE9c7z6UVVURv/QvTJ3sQZKUFuWbrpOaqnDV4JWsWvosNQE/Pc+4kF5nXYxHVfnus3e5ILaA3r3lFmV1p6tmpDj5ZJWMT+azaftmzEnWn/BkI4DZ3Pb4qJWxULTRbYTkcDiYMWNGs7GQPvZJT08nPT0dq9Xa6lgp3AfREeSeA3H6fPRKrMSaGN4CNH+RFQVGDXGzd6+20FjRwKt5+kcDG9KvQwb2H9rD4D5uFCXc2RouRpXkZJXeMTZcHjee1JHkbu/J/61JQhk8ntpgkHjzAVJS9FasZR1UZBlGDPFRsX8bKrBr5HVH9V0jRgesdtFMtxGS1Wpl7ty5zVqXvLw8cnJyQi3T/Pnzm1no8vPzW+3SHYmGg7uJAWprDXj9LSMOCH0OBlUqXGZSk5ORgZjvniZd3UPg++cIAPHmOOq9eovWMnRHu15dHXiNvTU7XdVW+u9bwQBHMbU712EGGuoNjQkkCbtGk6iCwSAHnUaSrT2RANMPzx71940IQkjt0q2ewPz580NOV4Cqqqpm1pi5c+eSm5sb6gIWFRWxaNGio76PGRg+egwlrrEcPBg+LoHwqebBYJDCz41cfdUfSHzgZtKo5zrWAGCVJGLOvYFVJaaw1SbCy2vXOHAgyMcV05ieOZHlJcVkUxo6Y/jgDDYaTmPPnpZ10NHE9OVXEjffeC89Vq3ATRdFN1gsWhPdGoGWkxKjj25tbIg0+sD5ixPH47j2Bf74vxPZvFmP7m7NtCthNFr49XU+ft/z36x7+u9sqq9juNnC+Nvns6judyx62YTb3bTsyuEYGDbMzD9uLWV4/k18umolfknizKEjcN7yHH9+Ywqr17RVB63LZzBYmHmFyv+d8D82PD6XWS5X5xsbJk8msY2Wx+X3k1RUFNXGhqgU0uxbq/j4k6TGdYe0X9OEBBOpqQYMBhmHw8+hQz702DiLxcIppyhcfl49vf37qFB6825BAt9952+clCchSQo9e5pISpLx+6Gy0kddnR5PLtO/v4VLL1E5Zeh+pECA4n39ee9Dme3b9Ul92pyknj0NmM0y1dUBDh3yheLrTCYzU6YYuDD7IPMf6NP5QjrttPaFtGKFEFJXV6KzaJqPtB+IAUCSFKZOtfDrU7Yw0biSuJQgB3wjeGHrKSxZGmicmKclgJQkBZMJfD61cQarFtCanGzi6pwgl8d+Qr8BBzF4FL4xXsC/X+/N2rUNNLU2RkwmrdXxevVcEdq1J0ywcEt2GSdLX5HYK8AhzyBe2XM2r7xK49pI2sqCUA90gZDOOqt9IX3xRVQLqVuNkTqPBrRQHSPjJ8Tw1+zPcD5/Gx81+omMisJfLr6S1Nn/41/PGPF63YAHVVVpcktpabMsFgs3zfJwvfOPfPXf5/jB60EGBiUm8tKCd7hh0emsXx9Em47ubxRQ+DUMjBgRw0OXrsT40o18trOUAGCUZe485UwG/O5dHn7MTF1dXeM1uiavHWYzbaZc8vla3x9FdBurXVdgMpm4aKqdhncfZMOe3diBaqA+EGDJO0uZYX6FEcP0lc51wg0DBgYPMXBh7Pt8mZ/HIa8HO1oK360uF7uemM015x7EYjG0UR4UxUT2abXEf/EwP+wsxQ7YgbpgkDdXfM45jv8wfqwe8NqFCKtdu0SxkCSSkhROHb2PfRuKqSGBV7iRf3IxG8nGDcTs/orBg8Mn1TWV1f8dOVzFWvYhTp+P9VzK41zEYu7Eg4X9O3YwMb2S+Pjw8vpUdY24OIXTx1az5/uv8GAgn9t4nIspYgYegLUFZAwJ0roxpBPpQNBqNBOlPyVatywQUFHUIGowiBEPnsbUw6r2ChOUTPh8zecPtRSVpIDUoJ1vphLojYUK/MiYgIaAoTGmM3zpSjlUB1VVkVFB9SPhx4dmAJGo0U41mRuTtITXoQtQlLZbnmDXLcnZXYhSIWm4XCoryoZw2sgTObB5A3fwEn4kTKj0kCSq+p/J3vW6cFquI6s5TTdvkvBccy1xH7/FaL4nHQkJFQvQ76RpfL/RSm2tXr5lLJ5Efb3Klz/24topp2L79gtu4kU8jXWwAnUnXkDZ93oIUhd2INrrwgkhRWvXTmsR/H4fSz5MQPnNS5zcuw/xQCIqKTExnH7x9XzccAmltvBkJ9oq5OETr0tL/byw80JmzL5XW6qyUQCj+gwg7qI/83FxLzwef4vy+lwkiUDAx/ufWqiYtZizBg8htrEOVqORs864gBWGq9i0SU/S34UT+0TXrl2i2Pwdh26SHj/ByK8vruDsAWswJ/jZtrMnSzdn8vZ7Cg6H7myVMJsNGI0qHo/a2N3SWomEBDOXXhzk2nFrGTGggoYama/2jOWFT/pRXBxAVfWFwhRiY7WFxurr9SSUuuXOxM1X2jm/fxFxKT52707kzdKTWPK2iYMH3TQ5Z+vw+3t3vvl7zhwSTabWz/F6SVq0KKrN31EppHvvOcS77yWzY4fudJWJjTXQo4fmJ3I4VOx2f+O6rTJWq5FzsiSuyHaQVLsbe+IQln2YwPLlauOKfkFk2UhKioGkJIlAAA4eDFBXp6fxMjBypIFZOT4m9dqJosgUHxzMa0sMjZlatfuYzQZ69dIWGnM6VaqqAgQCWkrl+HgDZ50pc9HZ+5jz+4GdL6Tf/pbENqK8XR4PSf/6V1QLKSrHSOe/O5Vz7lrCPYvHsnFjAPBTX+9n9+6WZ0okJir89oZqLql5mC2/W8wPHg+DZJncm+/khVv+xr/zTNTVeQgGPRw65OXQoZbXkJkyReHP539F/Fv3UrRxPR7g1H4DOHvuK/z+1VP44QfNuevx+Ckv18s1ZRqKiVG49ap6rpEfZdOfnjxGT+UItDdGErF20TlGKijdjvpUDnfMrCQhwYg2/vC32LRu18QJcJ7yKt/87z9sb2hADQbZ6ffz5uKnuEF6iqkn6xa41q4RJD7exMzT9mF6Zy5fbVhLXTCIPxjkiz27OfDXK7nryp2kpup1CLS4vzaIHzNG5soeb7Pqv/9kc31dJz6pMMR8pHaJSiH5gR/LbEyxfE+/fi3nEjW9wIoiM2VyEP8nL+EIBNiFlTxOYgep1Ksq+958ntNOqsdoVMKuoWdS1UhOlpg2YBvbNqzBA7zHKF4lEy+w5dBBxrk+ZtAg3QoYbFEHbQHmsWPA8OX/OOhxU0nssX48rSMcsu0SlUIy9MzQRiWmALIUPrEvHBVFkUhO9OGotQNgvfwe9tOTXlfcjQQ0SEFMqh9Zllq5hva3xaISEzhEbTBI3MATcA08FXe/CZgzTtLkYgigKC3Nx02+IkmSSEnw4arR+oy9Lr/r5z+An4IQUrtEpZCkg6X0SEykrHIg9mpoawqEzxdku81M37ThAPT//hnmZvro98MiZKDv0IlsKo3B621tkTDtmi6XxIH6NJJMJny7N/HbNBv3DN+PtHM1yRYL++uHUVnZVh204Ngdu430GngCAKbCZ37+A/gpCPN3u0SlkJIVmeGXzeG90tEcOhQebaD/q0cd+Cn4XKEy5wlO6NuPugMHiC35lLq9exk1dDhlk+9iZYkBVW250kTTqhWVlT7+u2kKp9/0O+KB6m+X4/zyIxIDAcZeeD0fHjqZ/fvDfVUtNz/ffKOydfrfyczIwFtT0ynP6DD0yIbWtrYm/EURUdkmn/zXl8nfeTEffGAiEGhaJExL3AjhORPKyz3Mf+kE5v5hJdfankV5/y0806azafJvefzNIewoDV+tT3e0NpVXVR/vv69gufxBfvvseSS98ghqlYPaG+5myd7zWbI0Hq/XQ3jmoqbxkibQykovf148mHtvXcHMfYt45F+Hpxg75rTX8kSPB6VNotKPlJ5uZ8+eWLxebZ6Q2Wxg3FgDk8d5SUiErTYT330PFRVNjtDkZDPDhsn06QOHDqls2aJit3tDx/v2NXHSpAAjMgLUNiisKjGxbp238R4qRqOJtDQDw4ZJyLJKaSns3OkP1cFoVBh9gpEp472k9lCx7Tbx7fcye/Y0reZntZoZMqSWNWuSO9+P9OyzJMbEtH5OQwNJt90W1X6kiAhp7dq1FBYWUlVVFUrSl5GRgdVqZebMmd3m4TZFNuxCX2gsKcnCnTc3cKXvafavepfgwYP0n3wy5Sc/wP+9OIwNG+ppWtsovAujd+dMTJxo5s+XFtNjw5M4S1ahJCWRft515NXexqIXDdTUNNAUpxfe4mipjGNjLdx8vY9fxz3PgR+WEdxTTuq48dRO/wt/en08P/zgpml5zTpgQOcL6cUXSYxt3WLoqq8n6aabolpIP6tr9+ijj7JkyRIyMjLIyspiyJAhzJw5M5TZ0mazccsttyBJEnPmzGH69OmRqvfPRB+TKFx8no/s3X/kk3eexdvoWCwuK2P0t19z351fcXfuQKqrdf9O07qw+nioTx8Dv794A+4XrqFwZ2lopFNUUsK1vy6nbPojvPmuEdBblvCuoNaVO/t0lVm+hXz6rwW4GxOpqLt2kfHNN/xx/nLm7BrNgQN6BEQXTaJrzzonrHY/TUhlZWUsXLiQmTNnct9993WozKOPPkpBQUGrS310FXFxCtmjdlH51BK8gQBBuRf2lGz6HXqVjXv3ctWPTzJmzON8/bW+thE0zz+nMHy4wogfX+KznaXEKyZ2xF/AaN8aDtXv4seX/8PMB26l8MsMnM6WK54DqMTEGJg+2U513ou4/X5kycruXrMYVbEYm72KnM8f5qSJr/Duh1rC/S6jvTGSiP4+eiE5nU7y8/N59tmjy69233334XQ6eeyxx/jDH/5wtLc9BkhYLDK9e3koq3XSgIFX1ZPZe8jJFXImJwZLqK7dS//eLX1DzQWRnBQgYHTgAzapw3nVGaC/NIarqKDa62Z8qoOEOHA6W6+D0Qj9enmprnfiQ+JN6TS2VJRzvnIKEwMrqHLtZ8AJPhRFmz/VZbQ3H0lY7Y5eSElJSR1uhVor2z1EBKDi9YKr1kK80UyMr5ar1S/wWXrS023DB8QnprFvV/gKe+F/a9dw1SnExiUAMDr4I/fHu3HXHiQBN8mWGPa7euCsOTz5pH4tjweqnSZ6GYwYUbk8WIA/bjCJdVvwAymJ/dl7wEwg4KFLEV27djnmfqS33nrrWN/iJ1NbG+S94kGMufIGTEAsNVgbRTRp2HBK0u9g6zZoSmgfLijNT7R5k8qWzDsZ07cfXsBcuwMrTmKBEdfexVvf92+cMqH7hWj2r8ej8uH3KQy97m5iATNuYhtFdGLffmybNpe1G3TjRBf+8guHbLsc85+SJUuWcMUVVxzr2xwlmqFAVT2893EM/W9+hNl392b9Z29QFwgwsE8GjjP/yP/7JJ2KCt1aps0bao7KgQNeFrw+lL/P/ZTL37+XDTtLMVmTyRh2Bu/E3cfyd00EAm6axBf+2yUBXgqWx5DWby6/n5/E5g9fxNlQT9/eaQRPn8vCz8dQXu4NK9NFYhJdu3Y5Jn6ktWvXsmjRIpYuXYrD4SDQTcLsdVNu//5V7N0bi25AiIszM2G8zJSxdSSa3Ngq4vhmlRmbrWntJKvVSEaGTHKyhN0OO3YEcLn0+UYy/fqZOHWqn1FpNTR4ZEq2JlBUDE6nJgJFMZCWZmDwYAlJkti1K8jOnQGCwSY/0/jxClPH15MaV095VRzfrrawdauPYFCLRE9IMDF4cC0bNqR0vvn7229JjI9v/ZzaWpJOOUWYvyPB2rVrWbJkCXl5eVRXV5OZmcn999/fKStKHy2v3v4F/91xKUuWStTXe6mrq+ebbw18970RWTYRCARR1YbGsxXGjDFz7/UVTNvwBMEtq5FHjqfo+vt45IU+bNigpRvet8/H0jcNGAzxBIMqwWDTzNrYWBM5l6ncnvklPd79F6rfTf2vb+W5vZfyv1dMuFwefL4GiooMrF5tQJaTGn98muowfLiZu3/lYMq2x5m8oQsemhgjtctRPYGysjLWrFlDZmYmgwcPZufOnSxatIj8/HxsNhsTJkxgyJAh2Gy2RscnZGZmHpOK/xy++78c/nLXH6m74CGWvWlEVTWHZzCoW3L1RCMKQ4aYyL2+BPczs3htZ5kmjaIvmfR1Prl//IzZC4ZTXq77mDw0y6ePhCxbyMmRmGeaT+G8p6gOBAgCcd9/xt033oZ35lM8/6KBQMAPeFFVlUBAN2po3ck+fUw8fMsO4l+4kre2bOzEJxWGPh+pNUSCyKMzNqxZs4YrrriChx9+mGHDhpGRkcGyZcu48sor2bFjB6tXr2bWrFkhEQGcffbZEa/0z8UJfLz4CWZOXE9qavjEPD2+TbeyyZx9ZoCYdx9g3c4yKujN94yjHpkf9uwh9c37OH2qNhVcI3wukeZb6dFDYeaAFSxf8hyHAgGKmcgmxlMLvP/qc8wcvIK+ffWEKi0XKgOQOOUUlf4Ff2HVlo3U0nrehGOOmEbRLkclJH041a9fPyZMmMCtt95KSUkJjzzyCEOGDAG0+TPdHW/yGFzuBgbLm+nTJ7y+zU3URqPC4AFeaiu2owJ7x9zNZ2SwYcwjSBjYv30dY4fVYrHogaotkUhKgp7J1XhrXNQkjmFNz1P4OPZk3P1Op8Hvp0fDGtIGtFZLTcyyrDC4v5+6g2UA7B81N0JP4SgRQmqXo3oCWVlZvPXWW9x7772hVufNN9+krKwsFFd3POCr3oYRCPqNBEN2kMMn5wUCKjUNBhJlIxJg3rAYM+lIGxbjx0+casQbMDR2B1v6mDTcbgnJmIgRsLg2YyQOM0a89Wu0dtBnwBfqDoZHTTTVx1lnJMmkdatMm/Mi9hyOiva6dl5v6/ujiKMSUlJS0mGm7CuvvBLQIh6WLFnCqlWreOutt0LndZ9Ihibi8TB6yBBW1p3E7vLwF7d5gvtgMMjqEiM3XHgtpm3/xwmUMRptnBQD9Jp5K1+viglFcOvlmv5VqaoKUuwaw4i0gVSX7+ZGVkLjnUb17s2muHOxNcudd3gd1m+A2AuuJ37VCgZSeaweS/tE0NigrzTecgXyjpwTqf0RRz0GOBwONS8vT50zZ44qy/KxuMVPwul0qoD6yeQp6vt/+04dN9anQo0KThWqW9mcakKCR/3TvTWq7Y671VclSV0Ian5MjLrxrvnq3Nuq1IQEtwquNspXq1CjjhvnV7/6z2r161EnqE+A+m9Qvxg/Xv38b5+pU0/yqpJU224dLBaPetfsenXn3AfV/5lMKqA6nc5OfWbOgwdV1eNpdXMePNjhOlVXV6s5OTmhz3PnzlULCgo6dE6k9h8LjknnNikpiVtvvZVbb72V1atXH4tb/Cy+nPY2Hy7pxcZNTRlQLRYzyckyRqOEw6E2+oiC1NT4eGqRmc1ZjzHruT9zssVOpTuZBz9M4IuvZWpqmtY+SkkxkZgo4XZDVVUAn087tm6dj1uenMCsy1dz5l8OIhPg+02pvPl2DGvXBUO5wc1mMykpCkajlk7Z4dCsgW63j+deNlF65v9xySM3wz0DO/+hdaBFcrlczXabzWbMLTIMFRYWkpKSEvqsG6zCF9Ru6xyHwxGR/Ue7eHdHOOajxIULFx7rWxw1jz5tbIxd00J/xowxMWt6BdknHyBBcrK7Pp3nPx7ABx+oNDS4qa118/a7Bj7+NBGLJRGPB9xuP8GgFy15o4nzslVmTrMxckAFkhLL8h3DWfxqAhs3ugEf27f7WPBPE/+O74MsS9TVBfF6vaE6DB9uYmb2Ic47eT+pBjsVvoG8uHwwb79txOVy09Dg5uNPFD7/ovXJdccar1/G62/dNqXvT0tLa7b/gQce4MEHH2y2r6ioKLS4NhDqcnXknEjtPxYctZBcLtdRea9bmr937tzJ4MGDj/a2ESUQqEdbaExh5EgDj1y9BsPLN7LiqU24gV4WC3+78W6Sch7gpdcV/H4fquqhoaGBhoZwK5+M0Wgg5zI/98YtYNWDT/B+XR1m4MT0DJ688zXuWpTJlq1ayxII1LeIAtempw8caOCh67fS/51fUfSfImqAnkYj83Oup+f1T/H08wbcbh+q6sXtru2sx9QMv58WPrLmxwDKy8ubvRstW6NfMkcdtJqYmMj999/Pzp07j/pmb775JiUlJR0+Pzs7+7B9ubm55OXlkZeX12wF9KNDT5Vl4toLHShLb+f7zZtwAh5gr9vNZ4sfZfaoQtLTjTS3pjXlvQOZkSON3DrwXb54bgG76upoAFzAd7ZSzC/fwcwLazGGVrprmbcODAYTM85vYMDn9/B5cRF2tLmwB3w+3n39Ba5LXcroE8Lz5nUNbnf7G2jvRvjWmpAyMjJwOByhz3a7nfT09A6dE6n9x4KfFP39yCOPUFBQwO23394hQS1fvpyZM2ciSVKHA1jz8/MpLCxstk8XzuzZs5k9ezaZmZnMmTPnqOuvk5AAUwbvZtem9dRh4lVO52+cxy4GYA8Gid3yPkMzdGtauJ+oydI3bJiKcf272AMBNjGOR8jmv1yIH9iytoSTM/aSkCC3KNtEbBycPPoQO1euwAu8xek8zLlsYiT1gLrqTUYO06akt+6r6hwCgaZWqeV2NKGUM2fObNa9Ki0tZcaMGQCh/W2dE6n9x4KfPEa69dZbKSsr49lnn6WwsJDU1FTS09NDfdLS0lLKyspISUkhOzubpUuXdvjaDocDu91+2P4FCxZQVlYW+pyVlUV2djaLFi36Cd9AJRiUQTKCJBEjG0gafDFy2QbihmfD1hdpqKslLjaAJEktEuU0man9PjA0+lfShgxB2mMluU8q8sHVqO4KlGB9Y0Zf6bCyEARVwh80EDQoGJDoOeoy2FxE8gkjUDdtoaHOTXwfLQllMNh1zu6OdO06gtVqZd68eeTl5ZGSkkJqampo8D9jxgwWL15MZmZmm+dEan+k+VnGhiFDhvDII48AWhyenqcBtF+V9PT0ZuFCHWXp0qXMnDmzWWtjs9lwOBzNBo86hYWFrT4gj8eDp2n15BZWJYmamiCrd/Zj1JAM9m3ZxBm2h8nETNLWSoyAt+9J7FxpaFyWpWWLoLVSpTYJ7yXTMUr/I6HsXW6kFzHlPmTsJA4bwZa9vXC5mq8b24RMXV2Q1dtTOH/UBGyrvmbS5j+TTjypmyq1lZSGTcNWZmw0bHSdkNzuttdi1rt2HaWtl7m4uPiI50Rqf6SJ2MS+IUOGMGHCBK688kquvPJKJkyY8JNE1JYo2rK2WK3WZv3gcBYsWEBSUlJoa7IqaS+k1+vnna9SSL/9SUYmJWHFyQAqsQKXXnMjHxpu5seN4c5ShaaFwrSJfaWlQd51X8EVM64mFpUBVJCKnROSrGTM/ievfTGAujr9J1sOu4b26AMBPx9/EYPlxkfJ7NOHeOoYSAXxqFx47gV82eduVpV0/UJjkera/VLpdkFSDoeD9PT0NsXRkpSUlFa7gQDz58/nnnvuCX12uVyNYjKjJ3IsLvZxh/Fs7vjzj1y1eynU2dnfaxr/qTqbN/6r0NCgJ280YjIpGAwSHk+wcZqDitvtZdF/LbhmvMC1/7iJXru+oj6YwJpBM7n7rTRWr9bnLClIkoLZrAnB4wk2ZmhV2bzZx52LJ3HnPeuZdWApSs1+KpLH84b7Al5+wYzT6Q7VwWi0dEmwtdvdthvpaFukXyLdSkh5eXnMnj37qMq0JSJo3SEIcOMNJgoKY9m3z0Mw6Oe77wKsX9+Hvn1/h8UiUV0d4MCBIH6/1i1MSDAzbZrM9BMr6GN0cMDQjw+/TuL77wP4fF7sdjfP5Jl4s/eZpKaejd8fpLIySHW1tggZyAwZYuKCLD9jrTtRYhTWHhrM+x+a2bXLg6oGWLvWzW+3Wenf/3ZiYiQcjgAHDgTwerW3NCbGxMknK5xyYiUP//uoHlFEiNQY6ZdKtxFSSUkJkyZNavN4W2ZLvQU7Gm5ZPZ0r5y7lvv83lK1bGwAvtbVetm9veaaCxWJi5kUeftP3eXa8/ih7amvpZ7bw3FW389QJ83nhv0YaGtyoaj0HDsCBAy2vYWD4cAvzr9nOhE/v4tuta2gIBLiud38uvfdV5r4wljVrtTrU17deB6PRyKXn+/n98Fcpe+mBo/qukcLjabtF8nRxXpbuQLcRkt1up6SkJGTyLi0tBTSTd3p6Ojk5OVitVmw222HCOdoB5Yeb1nHOf6/lhks/4OF/W2lo0MKBmszaoGdEHTtG4tYhS/km9z4O+f3IgBMXB5/+Kzff35u142/h2+9lwtc00tDyM5hMJq49v5pBH97KO0XfhurwsdPJ5H/NZM41hdxX2qcx1KhlHbQx1fDhBn4z/hPW/uM3lHVRP0q0SO3TbVajyMrKYu7cuaFNt9jNnTuXnJwcQBvzhPuW8vPzj7orqLN+zWrO7ruBHj30RxAeBa6ZqBVFIfvsIA1LHqPK7wdiWWeeiAUjTlXF8+5/OHmSB0UJt+g1lQfo00fm3L4rWVf8PSZgPRlsk4dhBDbt2M5U09f0b7bYmX4N/bPMaaeD4c2F7He7ieui/7KOOGSjmYj8r0Q65VZ+fn4oI+u8efNC4pk7dy4Oh4P8/Hzy8/MpKir6ST6kahLRhu+1xFhaJn3UUZFlSEnw4WioRQJKYk7jbU9f1sacjg+odteTaPaELTR2OLExYMJOQzBInZTKx5xAQXAUe+mDBwgGa4iJ1ae2H44sS6TE+6h2a7FF2+NPOervGwmE1a59ItK1u+KKK5g/fz5z5swJxdE9+uijSJL0k+Yi5eTkhFqhloTPJ2nrnCORjIuU2Bgq95hpcLd8gZuE5fOprN1k4qy0Yazbt4dTGj5jeJ/r6VmxFA+Q3HMQFQeNBAK6afrwSXmHqlQO+EfQw2DE66/iQdN6Gky9kWoPkGQyYa+IobZWpq3wn2BQZeM2E7OGnAhbNzOodsVP+s4/F9G1a5+ItEgul4vS0lJsNlsoZOi+++4jKSmJ22+/PRK3iChm4ISzL+czxylUVPg5fJEvCC3y9Z1MxZWPkJ7aAw8qiQf+h1t1079HD2rO+QNfrY4lGAzSlrPUbg+wdPN4Jl11K0ag3rsLtXYVBmDsKdl8oVzE3r0BmgtQv79Wh9WrYfuZDzAqLa2rUuiLrt0RiIiQzj77bKZMmcL06dMpLi4ORRBMmjTpqEKDOovz/vo0Hwz6D6++ra+RBNqjMKHJzIjucC0r8/P39zLp9efPuOLm2Vw0bjyX3XIb/e97j4UrzmHjxnAhmgBL47+asSIY9PLW+wqvWRdyxaMvcckZ07nw1NO59O9P8/WEF1i8xEp9vTesDuYWdYC9e70sWDYS8+8/5bI5v+mUZ9SStrp17bVU0UREEkROmjSJ5557jvHjxwPw3HPPccstt3DOOecwY8YMbr311p97i4igJzscPbqaHTti8Hi0iXcxMUZGjjQwfpxKbCxs3iKxZk2g0Q8E2vItZk48EXr3hspK+PFHlf37dT+RRJ8+ZsaPkxg+QqW6GoqLJbZv9zVO7tN8WkOHKowapSUm3bYNtm3zU1enhf6YTAaGDTOSmamSbIWt2yTWrlWpqNDnTcn06GFi1KgaVqzo/IXGnn7aSUxM6/draHBx551JUZ0gMiJCcjqdLFiwgNtuuy00Rlq8eDFOp7Nb5WtoWmhsN9pCYzIJCWZ+NdPNrP7vEPvRIijdRlzO1aw5cR4PPNOXrVtbLjSmm7r1x2Zg7Fgzd5+/ifG1ryIvfRl69cRy03ye3HolL78K9fXuxjJ6mBE0mbplYmONXH2Fyg1DPyD+i0VIa9cQe+EllJ7yf/xp8RDWrg1faKwWSOt0IT35ZPtC+t3vhJCO2SSXRx99lIkTJ3abBcaahLQTSAJMXHyBwvx+uXz/8t+pCfMsnjgonYbbl3N3bj/s9nqa8s1B0/hFJiUlhr/esY9B7+VQsr44FBFnlmUu+PV9/O3Qw+S/7UUTQrh5S4+bM3LmaUb+lvk8Jc/NpbquaeJeRs9eJN+/nDmPj2Dv3vrG+zuBIZ0upIULnVgsrd/P7XYxb150C+mYOiXuu+8+Jk6ceCxv8RPRfjvi4w1cOnkve996EpfHQ7/zLiN46R3IsbFs3GVjwoanOGFUeCuil21KIDlypMKptmdYu74YYmIJXDibQZfNxB0MsvGVf3FJZhmJiS2TzDc5XU0mhQtOdVC37B9U19XS54zp1JwzG1NqKjsOVjJ4+d+YMBa62ncuxkjtc8y9ez8lAryziIuTGNrnEBVOB16zlf/YBvPwe/twZFxAEPCodnr0aNvHAwqD0gI01NoIAHuHXMojn1byzx/TUM0JVDc00L9PHTExbT/m+HiFkWkOyqsO4sPIq86T+Odn+9k9+Aqt/fFU0atH17+pQkjt021ChLqChgYVR30iMQYzJo+DjG2vYCAFNuzQsm4bUnG5ws3hLc3TQaocMvEpPQBI3vQ6mQyl147vCFJDUmwsla44PJ7wkJ9As2u53UHsdfEkxsRi9FQzcO1/mEBfTMWfoABxcX2odumZXLt2PtJPORYtdJsQoc5F+9q1tUHeLhnClCuuRgbGcoiL2UYiQUb16o1taA5lOyE8R0OTwUET0rq1EqWTf8uYJCsxwPnsYBKVxAEZZ13GNz/2pq4u3E+lz0XS6lBfH+Ttr3py4rW3YQKG4eIStpKCj8HWZConXcfWbeGzasV8pO5IlApJm5wXDPr5uEDho/SFXHvTbxiUmEhMfDxnDMwg7b4XyVsxiV279LdEn5BnoMnHI1FZ6eOfb42g18MfcsEJo4mPi6NvopVLLrma4skL+WB5LD6fn+aT+ow0TRAM8MXXEq8a53PVb//EcKsVc1wcJ/dLY+x9/4/n1p7J9h1Nq7B3VSdCOGTb55ha7bobugWqRw87hw7FoHezrFYTZ50pccYEJ5ZgLbvqevPex0Y2b/YTDGoDgNhYIwMGyFitEi6XxK5dfhoaNJO0LBsZMcLARef5GZZUSQMxfLPRyvLlYLdri5VJkoFevRT699cEuH9/kP37faE6JCSYOO00mayTa0kIVLPT3YuPC0ysXx/A79ecvjExJvr2rcNm63w/0h13ODGbW7+fx+PimWei22oXlWOk/91bwgurz+T9Dwx4PB4cjgbefkfhw49igTj8fpVgsAGtFTAwZoyRu6+tYOrOl5Ct9Rj9qRT2vpknnktg61YPwaCXzZt9bNmiYDL1QFVpTP6oiSQuzkTOlRI39vuMvt4fMCoBDvXK4tkNp7HsTQN1dR5qahr46COFggITstwbn4/GxcoCgJHhw43cdYODKWXPctKxyXHYLh4PtPWTK3LoR6mQNvwxm8fufRjvOXN57309H0IArzc8kb1m9h482MBfcn4kefEM3irdjt5JO63vozz655Xc/vd+7N3rB/yoqrfFJDcFWTZy4YXwO8vf+e6JBazweLSFxqR/8NBNdxK4/HFeeVVCVbU6+HyH16FXL5n7ryolY+k1vL++mK7A7we5jYGAsNpF6RjJrqp8+uw/+NXJG+jVS1+4K9C4+WmKOlCYPNFPv/X/5rvS7biQqMSMF/hy/376vH8PZ53qp2nF85YLjQVJSjJyUcYm1r6/mEqPhwosODBQp6q888oibhzxNQMGhNchGFYXzfQ+frzMCNtivllfHFoMs7MRY6T2iUohVZCBo7aOQaZtjX6i1vosKooCo08I4lz9OQHgA+7j/5HNMv6IDzi4YRWjh9ZjMsHhCSQBJKzJMKqnjUP791LBMF7gav7NVZQyiRqvlx4Na+ndu/nUi6byKpIEI4cH8G78Eh/wBXdF/Hl0BGG1a5+o7NqZcWIC/HIcbnfzF7fpXxlJAkUGk9+PCvRiI5tRSWMNMhBvMlPTYGpcaEwvF+7vUUEFQ+NKYjHYMVKLgptEqjACkjERr0dPhRx+He1fVdW6VEa3myDQh65YiVkTTFuLMYquXZS2SFYOMSw9nRW7h3HoEDSf4t3UOvj9Ab7+1kjf82chA6fzIX/iI6byMXGA+aKb+GG13JiaqzUCVFYGKPFMZXByKklUcTfL+D3vk0oZGT17UFQ3kb37WpYLb6ECrPxBIfH861CAMXwZsedwNIiuXftEpZCGD8kg8eqFvFs8CJcr3Dqgx9XpL7Gf775Xeav3A1x16Qz6AilAf4uFs866lO9ib2DdJmNjfrrw8k2Pta7Oy9Nv92XI395mQt++pAA9gGEDBzHg+n/w1oZR2O368i6t12HtOj//C/yWa66/lX7H4Hl0BBEi1D5R6UfKvXcTb307lB9+8DemI1aRJBNxcTJGI9TUqPj9elYfCas1hksvDDJr8jbSM9zs2WnirZKhvPmRsXG+UABQMJlMxMSA3682RjNodmFJMjJmjJkbLjjI9DHlGEywckMPXvtqAN98G8Dv9zbWwUhcnIKiQH09jXOZNBN6fLyFC8+Dyyas4+o/Tel0P9JppzkxGFq/n9/vYsWK6PYjRaWQzOYKPJ5Y9C7UwIEWrpoR4JwTd2Gpr6bUcALPvxrLt9/6CASaXvKEBCMWi4zbrVJb6yXYuJKz0WjilFNkbrq6ngzfFnxJPfh47UBeXypTXt6ALkiTyUhSkhFVhbo6f1gaMJm+fS1ceVmAS6ZVEOfcy964UTz3WiJffe1rzF+u+bQSEtzU1PTodCFNndq+kL7/PrqFFJXGBo+nAX06+PARFhZcvZYeH/2W1f/8nhrghNhYnr3vMf7S42befNuIqnpQVQ8ul4fmqztKmEwxXJ0T4K7UJyi7bwGFLhcxQM6ETCb/7nX+8K8Mdu3SJgd6vX4OHmxpwDYwcKCFv/5qByNX/JZV/6+AKiDDaOTfv/0LuX3/wH9fM+H3a5P7amq6ZqExj6ftLpyw2kXpGEk3MSuKkSvOspNYcD9frPoeV+ORjfX1fPm3O/n9yV8zeLAeZBq+SJju75EYNFjm2oEfseb5h/nR5UIF6oEP15SQtvRGZl1aj6KELzQWXh5A4fwz6sgoeZDCLzQRAZT6fHz0+F+4Y+g7jBgRXoeu6UCIMVL7RKmQACSSkiSmjqlm/5of8ACfMYKnOBU7FiqDQRKLXiJzQnjkdlNZDYVh6RI9ypezv76OCqz8P6byLmMJAmtW/cA5o0obk1BKLcpqJCTITJtQy4FvC2kAvmcIT3I6e0mkWlVRl+cxdXKA8IjxrkAIqX2iWkiKIhOvuKnzurHEJtD79MsJxPYiLetKANzBIEZZXy2v5aPSxGGxBAl6awkCI84+F3dsfwaccg5yfDKqqmKQfBgUKayMdm99k2WZeLOPenc9RsXAwIuvxWO0MvSSG5EAt9+PyeBHUcIteZ2PMH+3T1SOkfRUW3V1sG1fD1J69ubA/r1M35PP2H5JNHy+BhNAn8nsWGmgefKT5mmF9+w3YJg0FgPgXL6Ee4dPIrlyA1W11fQbNIT1u/rgcIY7aeVm5RsaYNPORCYPGEzZ9s2MLnmJ36f1xvvJJ0hA/PBT2bLd1LgKe3j5ziUQaDtoNRhsfX80EcUtkkx9vZ/XvujLiLseI81sxm7bgbSjmNhgkNMuv5oPDTewbXtTfgaN8ESSQTb+GOBD6xzOPfdCTZ7bVmPfvpWMlFRSrvkbb37bm/p6vVVrmYRSxuv18/byZJLveIqMpCSce/dgthVj9Ho5PfsCPu/1G9ZukFrUofMRLVL7RKX5Gw4A8QAYDEamT1e4J8fG8K/+A1s24brwOt5zX8zzSxLYtavJn6QoMrKs4POFB5Uq9O5t4tfXe7i6/2ck5D+H19qHsvPu4NmC0XxaKFFfryeRlDEaNUFp19B+ymXZyMknK/zhhr2MWZ2HUrKSmrMuZXn81Sx6w8rWrX70ECJZriMY7N3p5u/UVCey3Pr9gkEXVVXRbf6OSiFddqmd71cmUVGh+YhkWaZnT4XBg2Xi4iQOHAiyc6faKAAwmxXGj1c4eWwNg/p42e+M46uVMaxZ428UhIrZbGDgQIX+/SV8PpWdO1X27w80+pokevUycOrUABOG1WIyy6wvS+Crr2X27NGEKkkyKSkGBg+WsFolKiu1OtTUaHUwGhVGn6gw6cT9PPfygE4XUny8E0lq/X6q6qK2NrJCys/Px263k5KSgs1ma5bz/UjnHO3+OXPmMGPGDNLT05k3bx7Lli07+gqrUYTT6VQB9fvLr1JfWrhXHTw4oEKdCi4VnCrUqFDb7LPZ7FGvu9ajrv7jc+o7Eyeqr6ekqO+PG6eufeAl9YbrvKrJ5Gk839H4b23jdVyNW506aJBPzftHuVoy8wb1jUGD1Df69FGLL52hvvHYDnXkyPA6OFqtg8HgVq+41KuufGCpmj/lZBVQnU5npz4zi8WpxsSorW4WizOidaqurlZzcnJCn+fOnasWFBR06Jyj3a+qqpqVlaUCanp6+mH36ShRaWx49+03uPDgAa657G2eWBQXFmHQMoGjkYkTJX4z4CW+fuxOXF6v1smz29nx46+56yELm8bmsHq1PoZpaQdWiI01MmeGg0FvXc37q78JmSo2vbuMU3Zu55acz3jgCSt1dXodwhd/1uLuRo+W+d349yh+7GbK67rGIet2tx39rfdpmq8a3/bSo0eisLCQlJSU0OeMjAyWLVvWbEG5ts5xOBxHtT8rK4sZM2ZQUFBw1PUMJ2qNDcXffMn5fVbSs6e+J9zhqr3MBgOcMc2PZ9lTuLxeEmJTWGW8nbS4VKoDAbwv/40zJtchy+FpiMNX7gvSqxecFvsNW9asxCwrVDIBp+kcFGDturVMlz5Ay/Is0VxIWpdRkmDKZBX5rcc5WFdLr/jkznlAhxFEVVvf9LFeWlpas1Xk9TWujpaioiKsVmvos94V68g5R7sfCK25lZeXx7x5835SnaOyRaqgF1YqiVErSU6G3bvDJ9U1Xz0vxuynVvKiAm96MvkuUE6VOplsPuFgnZO+PRowmYy43S1twNq1DAYwJ6p4An4qpQT+xyACPh+zpCEMVctQfQdJSmprmKoiSTJxlgBus9ZaflQ/HPghko+jg+gGlraOQXl5ebMx0k9pjbqC8PHXnDlzftKi4FEppN5UEmcw4PD0obq65aQ6HZVgUGXfQTPnJqUC28kOfM4MKRWHXwvk6Znan88PxuP1hq/9Gi7EIDU1Ei5fL+IMJpL8NdxNIZKqYMBJjCThCfbh0CG9NeKwawSDAfZVWuiR0BsVmBz8gabFPzsTPX95W8cgMTHxiMaG3NxcqqqqWj2WnZ1NVlYWGRkZFBc35aaw2+2HrRvc1jlHu7+wsJBFixaFDAxWqzW0fvHREJVCUoApF83kvztPYt++pq5Jy8iBYNDPVyuMXHfDnxmw6Ur2ut041IMADImPp+6KByh8w9SYcag1ghw65OM92zhuOOciPvzoLQzUhtLnn3TWebxfdwG7d4f/2rcMJQrwww8qFbfNY2jxl2xsMQ7pPMKfU2vHOkZr1reWzJw5s5nlrLS0lBkzZgCEFuNu65xJkyYd1f709HRmzZoV2l9SUsLChQs7/H10otL8vWLmvRT2nsszbyRx8KAXzUigOzwlml5qGbBw9nSZv57zNcqKf7H/wD5S0obgGXYDj63JpvBztTFtlt4ihSdC0YwFKSmx3H1rDde4nmDb2s8Jmgz06zuBz/vfwxOv92bfPn1Ok15GblEHM9OmKTx0yRrM3y3k9Pfe7nTzN5QBCW2cVUOkV8goLCzEZrMdZqqeOHEiixcvJjMzs81zjna/bhZ3OBykp6f/pCVVo1JI0046yI+bE3G5tIXCFEVh0CAzo0bJmM1QVgZbt/oaV9JTkSQDAweamTQuQO9UD1VOA2s2KNjK9OSNkJBgYuRIhUGDZGpqYNMmlfJyXSAQE2Nm7FiFE4d5UGSV7bsMrNsgNc6ODSJJCmlpWh0SEyV27VLZvNlPTY0nVId+/cyMGV3NJ5/17AIh7aB9IQ0VDtmuroSOw+EILZWpr0m7ePHiZtaW3Nzc0GeHw9GhroJO00uxB4gDJMxmCxefp/Kb04vol/8wvqr9WM68hIKh9/CPfyc2Tszzo7cukiSjPbKmyIa0tBjuuqaKCxteRPpsKXJsIrXX/4nHfjiLN9/04/O5aWqt5MZr6N05CYPBxNnTDfzu3HVkfPgwnvIdxEyZzsqT/8hf/92LbdvqAV9jHbpmoTHYTPtCGiWE1NWV0JkzZw7z5s0LDSznzJmDzWYL2fhzc3MBmjXVy5YtY9GiRR26ftNLYUNbsc9EdlYMj435Fyv+M5+DXm/odc+aOImSKz7h/n/EU1enL/IVbggAUIiPj2XBXDvj3r+Cz4u+D3XOkhWF8+f9k9+svJPCz+s5fKCuX8vI1JNi+Xf2a6x76k7Ka2pCR6YNHcbBO5Zz5996UV3dgCY8F5DeBUL6kfaFdGJUC6lb+ZFsNhv5+fmhzxkZGaxevTr0ecGCBc3MkllZWeTl5f3k+yUkmLnmlJ2sff2fHPR62cAEVnAqXqCgeDWnVzzPiBHNk5loNK0MMWGCwtTNT/LF6pU0YOBLTqKMDOyBAOue/TuXn1mJxWJqpaxGTIyZnLOr2P3y39hdU8NWRvElp+BB4rsd2xlT8jjjxnTtXCQN7xG26Kar/3eaUVBQ0KyrVlRUFPJm22w2HA5Hs26eTmFh6wZhj8eDy+VqtmloUQMWi0q/HtXUVh2kTurBhn4X8aXUl72DbgHAd3Ajg9KCNK3Y19K1L9GnVxB3/U5UVaWs/xy+Uwbxea9fEzClcsh+kOE9K0hIaLnqX1MdTCYY1NuF4+A+fJjYOOgGvqIHpUPuIwjUVGxicJqeKLm1OnQW4bN7W25iHkW3ElI4+fn5OBwOFi9eDHCYZ1vHarXicDhaPbZgwYJmnva0tLSwoxI+H9QEUkg0GIhRq+i3byk91L3E7NJaRYMb1GDLTKzNW5Qqh4Q1pTcykLb3OXoG9tC78nWC3iosJhPeehVJarv37POp2BsSsZrMGPCStmsRqdiJLXsBFTC7NeHIcstZup1N8AhbdNPthORwOMjLy8NmszFjxoxWW6BwUlJSsNvtrR6bP38+TqcztJWXlzc7XlMDn2/ox9gzs1BQOYut/Ibv6I2D9JgYqqfdzPqNujk7/FHpL7XK9u2wf8x1DDabicfDHL7jYjZgAcaecibLtw5tdPqGl2v62+2GL4qTGHFRDkZgMju5ixUM5hD9ZZnAxbdTvM5IMNhyfNbZiK5de3Q7IVmtVmbPnh3q4iUnJ7fZ4gBtigi0EBXd297c6675iwIBL+99amLNmf+PGZdfyRAgGTh1yBBGP/gqj31+MmVlurVM757pC4Rps2z37fXzZMF4Ji18g9P79MUKjAAuv+pais/IY8mHMY356XT/kBJWXiIY9FLwhZHPhv6DmTfcwghZJhGY2rs3p/z1eZ4sOofNW3Q/l36NrqCtbl17oUPRQ7ex2jkcDhYsWMD8+fNDrZDNZgtF6WZmZpKRkUHL6kqSREFBQbPI4LbQLVAJCYeoqYlBb2l69TJx7jlw/pm1xBka2LjLSv67RtatCxAI+AAwmw306SMTFwcuF+zfHyQQ0HxIBoORsWONXH6Zh3GDXbjcJj77OpaC5XLjYmKaLS852RgKkq2oAKfThy6Q1FQT08+SuCi7nmRTDdsqknn7PRPFJQHcbq0OJpNCz5517N3b+XntYDmay6A16oCzo9pq122EVFJSwsSJEyktLQ2Zv/V9ulCSk5MpLi5uFnclSdJh4moL/aV444n1vPDRaL74MoDP5wEkJMlATIyMwaDidoPX29QKZGQYueECO9kjNpAk7UeNGcB7u05i8f8slJV50IUiywbi4iT8fmhoCKJPq7BYjJw9XeaaCRsYPbCMGLzsCk7gmU+H8sknQdzuJsev2SxjNEp4PGqzOgwcaOKaixycOfAHzrv/oi4Q0me0L6RzolpI3SbWLjMzk7lz5zYTyZIlS8jMzAy1NvPnz6ewsDBkAs/Pzz/qKF2Aqj9P44l7H+c++Vd89KmCtkiYm/r68LO0blSvXiZ+P+sAk77+Fd//+3NcQKwkcdbYCQy47R3mPdmX/fs9gI9g0EdNTbioFSTJyLRp8OdJyyh95m4+OnSQANAzJoZH7vgL5gvvYdnbCsGgD1V1t8iBoJm9rVYzt82q4rwNt/PZs+8e9feNDF60tW/bOhbddKsx0vz588nNzQ1tDoeD5cuXh47PnTs3NHckPz+foqKiDjtjw9ldW8u6p+/n2lNKSUnRf0v0+Dg1bJM5dWqQqTv/wafffE4V2ivjUlU+XVfC+DV/Y+pJWnRC83WNCF0zKcnATaeXsuPZ37P90EHqADewr6GBr5/9G9dnltC7d0vTeHh9JCZNVDnX/i8+/eRt7F2WskeMkdqj27RIoBkajhTyE378pwQXAtRgYX+VnenW7fTqNZTW7RUqFovMqVN87HvmAwLAJ5zDaoxMw8t0CqhY/Tnjczx8YDK3sY6qzID+MMZSTEFlBZX05hXG4SaGW/mGmLoqpqrr6ddvMvv3N9033DpnMCicNClA9Xvv4AZWciZ0ydIukYn+/qXSrVqkziLOOkBLLdzgRZbaNisHAhIeHxglGQkYdeIUoCcjThwKyEjeYGOa0cNbIv1ffwAIKKhAjwQj8amnkmjOILHPEFTA0+BFlsPz3rWcyqHi8YIsGbQ6jB768x/AT8JH26ZvXxfVqfsQlUKSHDtI7j+AHfbB2Kv1bplO098+X4BvV5npmXUlEpD24wJ+y1v0/vFFTAQxTjuPzWUx+P0tVukL/R1k/34o9k+ld59+yDV7uKbqUa71PI/hwGpSklPY7R9FZWXLOjQRDKoUFRuxnj0LCUjc+HyEn0ZHEV279ohKIQ1KSGDq7xaydP1YKir0hCUtEzhqSetXrZYpHv1/XHLGdBIIkIqLRMlD9knTKJvwJ75eaWxMuRVentA1XC4/r3w5kJPmP81Qq5VEakjByYDYOM666yGW2E5jz57wuUeE/a3VYd16leWpd3LlRZeR2EVJ9LVWp70tuuk25u/OQDfl5t1fxLLiCaxY0eSjkSSFuDgFWQa3O4DX2/Ryp6WZuGGmmwvil5PqLuMgaXzmzeKVd+IoK9PmE2lxcwbMZglVhdrapl9qo9HIGWco3Dy9jHGuz1F9PjYlnMorxSdSUBhozGLUsg7BxjpoRo8+fUxcM9NDVuxnXPDI5V1g/n4RiG3jrHrgpqg2f0elkBISDlJTE4cugIEDTcy4PMiUxI3ESg2UWsby+ruxrFrlR1W9aHOGjCQnK8TESLjdQaqrA/gaF1k2mQycepqBy06tYoh3Cw1JvfliZwZvvyNz4IA+F0kmPt5AUpIWclRXF8Th8Ifq0LevicsvVTmt92biA072JJ7Iko+S+PbbYON8JlAUI1ZrPVVVKV0gpDwgpo2zGoDZUS2kbmW16yxqaurRQ30GD47lj1dvJ/Pbe/i2eAX1fh8jLTE8f+9T/LnvNbz9jgFw4/f7OHiw5ZVkFMXEhdlB7h79CnXPzGNDrQujqnLb6PGc+oel3P9Uf8rL6wEPtbUeag9LS6fQp08sf7hmN2dunk/Ryx+w0+9nkNnMs3c8yD8G3Mmrr5sIBBoIBPxUVdUc+wfUKsJq1x5ROUbSQ/8Vxcg5p9YyasODfPT1x1TX1eLxeFjndPDd3+dw59RvGDLEEFbGjzYeaMrF3b+/gRsnFbP7+XspOliBp6GBGrebd4pXMuT9X5FzYW3jkiz6NfTyWmskSQZOn+pm6oHH+fSjJeyvq8Pj8bDV5aLg0fu4Y8S7nDBKH3+1TGLZmYig1faIUiFpjtf4eJkLpxxgR8G7BIFdDGBFzFSSgH0eN303vE5GOjQ5XA9PIjliBAze/F9sVVUkAV/ETOUAmnl9yzdfMf3E/cTF6clMAoeVN5tlzj/Vye73XsYLVNOTr+LPIBk4FAhg+folRo7QrYJdOWVBWO3aI0qFpEUhGAxgjW2g3u8DTPxgGMc3DcnsNg8HwGMCk1GPXGjKnqqhvdxJieD1OAA4GDOaLxt6sMUyBjcGvMEgJnMQo5EW5dXQ3yYTpCZ4aPC6UZEoMU/mq9p4SmPGowJuI5gMLct2BUJI7RHFQgricvlZY+tBn+QeqHj5lfo5f+ofwOrZhhloCA6iolJvTcJfZF1MfrbbwNBvMibA1LCRh/s4ODewEjN+eg9JZ9NGM3V14ckfIVxMdXV+ijYn0r/fQEDlIs+nPDDYSM+GtRgBQ+Ioyve2JuTORu/WtraJtS+jVEiar8fn8/LG531Iu30hfY1G6gINBPZ+ihEYd9JZfJt6Ldt3hPtJ9PlE+mPzs22Ln/fjbuX0M85BBvwHVuDxVdM7IYHUrNv4aH0/3G497134nCStDoGAh7c+TcTy6ycYHBuLmwDqzndQgNFjJlIy+GY2bQlP0C/mI3VHotJqp31traUpLvbxcOrVzHt6FGf88ALs3AXnXcFHjov518upuFx1NOVbMNDUzdNSdDU0uFn0WgLG619l1mUfEvxoKWqffjim3sg/P53Mlyv0MZEuHgNNSfK1VmbzFh8PFJ7DH/+5kqkbXiS4aQPy2RfxlXoFj7/Sl0OH6miaWBieSKUz8dK2iIWxISr9SJMn2flxYywNDQ1o84gsDBxoZMQIiZgY2LNHZevWIDU1DWgvu4H0dBNTp0D/AVC+R+a771V27fKgCUohLs7CqFEyaWkSbrfK5s2wa5cXVdUm9sXHWxg3VmHSRBUJKF6rsGaNn9paLd2xJJno18/MCSdAYqLEnj0qW7aoOJ16Gi6FgQPNTBxfw9vvpXaBH+n/AEsbZ7mBh6PajxSVQlp1272s6PcA/3gqhqoqfZFjLcecRlN3RVFkrrjcwG+GvolhZR7Bb77FMnEizPoLDxZk89HHTZEN4VPQw7Pr9O9v5L7rK5jqegbvO/9Dra2j59U3siLjLzz4pJV9+9xhdQhv9ZoiGy4438Dd4z9CKc4j67OPukBI9wNtrS7hAR6JaiFFZdfurWf/ySWnr+WOm97hyUWxjctLhq8moce5SUycKHHbqPfY/O/bqXA4tDN++J6k4kv4+19fxV6dw8qVLSPAdVEpxMfL3HCZi/FFd1G4/N2mqLRF/+LU8d9w75wC/vq4Faez5YBdv4bEmDEKd530OXuens32Q5XH7sG0y5GXdYlmotTYAD988wWX9ljOsGESJpMRSTIhyyYUxYgkGRvDcRTOPiNAwvu5VDgcWE8cx97zfkvfk0/B7vdR/8KfufCsGnr2NKAoBmTZGCovSQZMJgODBslcOGgtm7/+CK/BSOq1vyHx1v9DNRgoXreG83z5jB1HYx2MyLIBRTEiy1p9EhIMnDpNpc/nj1N+qJLEIelH/nLHBGFsaI+obJFqE4cS79qB4tlDv75+ysuN+HxNSzuqqoQsQ2qqxIheVdgqdhMEPvScS8Enm9g57DRO4lv21rtIs7qwWuPx+5v/JqmqjNEIaWl+4hq2UuXzUReXzjMfNFDjcTI7eQLywSK8dXvp19tPUpKpsQ5SY3nt76QkiWEDnOz5cicA38vnA//pvIcVwkfbv7si+jsqhRTj2kEiYOkxALNZJjUVfC3eBUmC5GRQEuPpqxjYAoza/gQeBjBi+6cYgEEJiaw1xGK1ahHfLUebRiPExckkxidgAWLqbEyjHg8KCe69xALxvfpjrFSa1UG/jixDYiIY42PorWj/VUNKnzl2D6ZdRNeuPaJSSAow7qST2OQbjT8gk5gIwaD24gIhUcTGwsayOE799W9JeOg+wMdZlAHQE4ibOZvdlbHExh4+wzYYBIMBfD6ZzT2ymTzqBL7YvInxHAjNWBo7ajS2hJPx+mSsVk1IctiPvqqCxQLby0ycf9O99LjvJtxdOh+prQSVokWKSiFdOGYcPe95is83DsFgkEhN1faHtyiSBIoC+/YprDr3N1z/gIdvn36CcrebnomJTLv0ataP+hUVn1uIj9dEp3XHmv4F7RorNvXmpife4dq//orl69fjUxSm9OtPj/lPsaR8FMGgRHJy0/3DVw9XFLDbZb4ddw0z/1nH17l/05LidToi+rs9otL8/c6ru9m8uz87d8o0NGith56cp6UQTCZISYETT/Aztu9+euKgiiR+rOjD+k0mDh3SWpLWuna6GC0WSBsIk0bXkGHZg0yQ3e6+FO+wYrPJ1NVBINBcSHodJEnrIlqtMHJEgGGppUyfMaILzN/X07Yz2Au8LMzf0cZ365IAmZgYTShHQlVh2w4De/alYTSm4fMREmBCwuECaoksg8sJ369JYG3MKAA8HqivB7NZ6wIeCUmCnbsUdpf3OfLJxwQxRmqPqBSS0ahtlrYc9a2gv+yBgPZSWywdE4COLGutU6DxnVMUrTsYE3NkIeooCm2k/eoM2hsHiTFSVAopMVETgqo2del0wrt1oP0ty833hb/4wWDT55ZldfTyepetJYEj/KDrdYDwLKydjRgjtUfUCikmLP1A+MvdcsDfmjDCaSmM8M/yEdzd7ZXVhdeSjnRFjw16pqS2jkUWfaXxliuQd+SctvY7HA4KCwspKCholqG3I/c6ElEpJN3KdjyitJbduFPQEv23TmS7dg6HgyVLlrBs2TIA5s2bR2FhYbMVR9o6Z9KkSW2WLSwsxG63N1sKqCP36ghRKaSkJIhra2GFbo6xrTz2xxw9OLc1tDjBpqVFNcxmM2ZzW4GubVNYWEhKSkros760T/jL3dY5DoejzbI5OTmUlJSEFvfu6L06QlQKKS5Oa5VacrTduJ9btqWpvSNlj3RupDGZTPTp04cDB1pfp1cnPj6+xdKi8MADD/Dggw8e9T2LioqardSod7k6ck5Hyh7tvTpCVAopMVETUjDY9GLKshr6tQ8EaBb3Boe/wOEGBu24lgPCYNDK+/36Memw8q2NyQAURbuGLGvl/f6m8vo1OltIFouFsrIyvEcwF6qq2ux5AT+pNTpeiUohWSwQE6O9wYqivfwWSxCLQZtDFEChvsGAx6OGnLXaSywhSeGWPhVZ1l58o1ElzhJEUfygSjT4DLjdMn6/Gna+FBKDtk+rg24aj4kJYjEGkAgSVBXq3Ao+nyZM/Rr+LkiPYLFYsByNr6AdcnNzqaqqavVYdnY2WVlZZGRkUFxcHNpvt9ubrZsFtHlOR8p25DpHS1QKKSZGJSFBawGMShADXoz1tUj2Wu2NtViISUzEG2vBGzDg90uNgmpqPrSXX2tBjLIfo78BxenSPK2yjCU+Hm9SAv6gEZ9fxh+QCASayutRD7KsYlKCKJIXo7se2VmrqcVsxpKYiDc2Bl/QgM+n1cHvP74DUTpiEZs5c2Zo8A9QWlrKjBkzAG051PT09DbPmTRpUptlj/ZeR0NUhggdPFBBUkI8ss+H7PEgNTRoYQYN2rRvjEbNPh4bixoTQ9BkIigrqJKMKgHBILKqIgX82jXcbq18fX1Tk2GxaIOx2FiCZjMBo5GgJIEkg6pNN5eCAWS/X6uDfn+3uyniNawOAZMZVZFx1tTSs3evX3w4TmFhITab7TCT9MSJE1m8eDGZmZltntPe/mXLllFYWMjChQvJysrCarW2ef7REJVCcm7eTGJcXNNgxufTtvCAO0XRBGUwaP8qSpPtWVWb+lv6YMbrbR4wp/X3mq5jNBLqB0JTgJ8+INM3PWhP98LqZRsHYK76epKGD//FC+l4Iyq7dni9TZ5Nff5Ey3if8BdeF4suBF1I0CQcrZ/WVF4fDOkDIq+3eZhEuOhU9fA6hJfX7xcIdGVog6AdolNI+kuvd6HgyA6a8NZEkrRyfn/T30cKvNNbufA66K2S3todTR0E3YroFJLB0LxFam+BY0Vp2+asi6c9U1pLAbXGkeoQLiCPp+3zBF1GtxNSbm4uoFlPgMNWLc/NzQ050BwOx08aGDZzyLTskrV1HrTtkTUa2z4WPu22LQyG9oXUMopW0O3oVkKaN28eCxcuDH2eM2cO2dnZoZAOXWSzZ88GNCvMnDlzDhPbEQk3HHQXOtpl6271FgDdyGrncDiYMWMGy5YtC7U4JSUlTJw4kdLSUtLT00lOTqasrKxZSIckSXT0K4SsdmVlx63Fy+VykTRkiLDadTO61ch19erVzeKcdA+zw+HAZrPhcDiaiUinsLD1ODCPx4PL5Wq2CQTHgm7TtbNarVRXVzfbpwskPT2d1atXt1nO4XC0emzBggU89NBDhx/oiJWtu3K81vsXTrdqkVqyYMECFi1a1GorpJOSktJsfkk48+fPx+l0hrby8vJjVFNBtNNtf97mzZvHrFmzQoaFtmhLRNDOfBjRIgkiTLf8X8nPzycjI6OZiNqKyHU4HD8pWlcgiCTdrmunj4t0EemGhvT0dKxWa6uTro52NqNAEGm6lZBKSkooKSkhMzMTm82GzWYjLy8vNBV4/vz5zSx0+fn5R+z6CQSdQbfyIw0ZMqRVC1x4FXNzc0NduaKiomYO3CMR8iMdPHjc+mBcLhdJPXsKP1I3o9sIqTMQQhIcK7pV104gOF4RQhIIIoAQkkAQAYSQBIIIIIQkEEQAISSBIAIIIQkEEaBbxtodc0TQqiDCiBZJIIgAQkgCQQQQQhIIIoAQkkAQAYSQBIIIIIQkEEQAISSBIAIIIQkEEUAISSCIAEJIAkEEEEISCCKAEJJAEAGEkASCCCCEJBBEACEkgSACCCEJBBFACEkgiABCSAJBBBBCEggigBCSQBABhJAEgggghCQQRAAhJIEgAgghCQQRQAhJIIgAQkgCQQQQQhIIIkC3SiTtcDhYunQpy5Yto6Cg4LDjubm5WK3W0Llz587t5BoKBK3TbYRUUlLC6tWrcTgc2O32w47n5uYCMHv2bAAKCwuZM2cOixYt6tR6CgSt0e1WNc/Pz2fBggUUFxc325+cnExZWVmoRQKQJImjqX5oVfPq6uN2RXCXy0VScrJY1bybcVyMkWw2Gw6Ho5mIdAoLCzu/QgJBC7pN1649bDZbq/utVisOh6PNch6PB4/HE/rscrkiXTWBADhOWqS2SElJaXU8pbNgwQKSkpJCW1paWifWThBNHNdCak9EAPPnz8fpdIa28vLyTqqZINo4Lrp26enpre53OBxtHgMwm82YzeZjVS2BIMRx0SKlp6djtVpbHStlZWV1QY0EguZ0OyG11V2bP39+Mwtdfn5+yKckEHQ13caPZLPZyM/PZ8mSJZSUlDB37lwmT55MTk5O6Jzc3NxQV66oqIiFCxce1T2EH0lwrOg2QuoMhJAEx4pu17UTCI5HhJAEgggghCQQRAAhJIEgAgghCQQRQAhJIIgAQkgCQQQQQhIIIoAQkkAQAYSQBIIIIIQkEEQAISSBIAIIIQkEEUAISSCIAEJIAkEEEEISCCKAEJJAEAGEkASCCCCEJBBEACEkgSACCCEJBBFACEkgiABCSAJBBBBCEggigBCSQBABhJAEgggghCQQRAAhJIEgAgghCQQRQAhJIIgAQkgCQQQQQhIIIoAQkkAQAYSQBIIIIIQkEEQAISSBIAIYuroCR0tubi5WqxUAh8PB3Llzu7ZCAgHHWYuUm5sLwOzZs5k9ezaZmZnMmTOni2slEICkqqra1ZXoKMnJyZSVlYVaJABJkujoV3C5XCQlJeGsriYxMfEY1fLY4nK5SEpOxul0Hrff4ZfIcdO1s9lsOByOZiLSKSwsJCsr67D9Ho8Hj8cT+ux0OgHtZTxe0et+HP3+RQXHlZBaw2q14nA4Wj22YMECHnroocP2pw0aFMmqdQk1NTUkJSV1dTUEjRw3QmqLlJQU7HZ7q8fmz5/PPffcE/rscDgYNGgQu3fvPi5fQpfLRVpaGps2baJfv35dXR1BGMe9kNoSEYDZbMZsNh+2Pykp6bgeX/Tv3x9ZPq7sRL94jpv/jfT09Fb3OxyONo8JBJ3FcSUkq9Xa6lipNUODQNCZHDdCAm3MU1hYGPqcn5/P7NmzO1zebDbzwAMPtNrdOx443uv/S+a48iOB5pTVu3JFRUUsXLiwi2skEByHQhIIuiPHVddOIOiuCCEJBBFACEkgiABCSAJBBDjuIxs6yvE0j8nhcLB06VKWLVtGQUHBYcePp+8SLURFi3Q8zWMqKSlh6dKlOByOVsOfjqfvEk1Ehfn7585j6gry8/NZsGABxcXFzfYfj98lGvjFt0hHmsd0PPFL+i6/NKJCSK3R3jym7sov6bv80vjFC6kt2pvHdLzxS/ouxytRK6Rf0ov3S/ouxyu/eCH9kuYx/ZK+yy+NqBDSL2Ue0y/pu/zS+MULCX7+PKauoL08FMfbd4kGosKPBMfPPCabzUZ+fj5LliyhpKSEuXPnMnnyZHJyckLnHC/fJZqIGiEJBMeSqOjaCQTHGiEkgSACCCEJBBFACEkgiABCSAJBBBBCEggigBCSQBABhJAEgggQNTkbuhKHwxEK68nMzBQBpr9ARIsUYVqbYFdYWEhOTg45OTmUlJR0uJzg+EEIKYLMmzev1WngWVlZ/PnPf+bXv/41mZmZrZbNy8trcwasoPsjYu0iRF5eHllZWW1222bMmEFJSQmlpaVtXmPOnDksWrToWFVRcAwRLVIEsNlsFBcXtzv2SUlJwWaztdvqzJgxI5RuS3B8IYQUARYtWsS8efPaPJ6fn8/ChQtJT09vt8XJyspiyZIlx6KKgmOMEFIY+fn55OfnM2fOHGw2G3l5ecybN++IY5fCwsJ2WyObzYbVaiUnJ4f8/Px2r5Went6mQULQfRFCakQf4+gT6ObNm8fs2bMpKSlp98W22WykpKS0eTw8D50u0Paul52dLXLUHYcIP1IjKSkpoRfeZrOF0gC3lns7nCMlHlm6dCkzZ84EtNYmMzOTJUuWtGm9S0lJadcgIeieCCE1Ej6Ve/Xq1SxbtqxD5fRuW1sUFBQc5iPKy8trc3p4enq6GCcdhwghtUAfD7Unjo7icDiYNWtWM5HOnj2b5ORkSkpKWm2V7HZ7u11FQfdEjJFaUFhY2Cy11ZHGK+np6W0aI5YuXdpMRKAJNDMzs03rncPhICMj4yhrLehqhJDQrHXZ2dmA1hXTWwSHw3HE0J32hNRyJQmdWbNmsXTp0laPHamrKOieCCGhiSE7O5v8/HwWL14MaOLSY+Taw2q1HtYVKywsZOLEieTl5R3mYC0sLAyNm2bMmHGYObyoqChknBAcP4gQoQiQm5tLZmZmRLKdzpgxo8OGDkH3QQgpQkRCAJEUpKBzEV27CDFr1qwjRi20h8PhoKqqSojoOEUIKULoY6mfOhWiPd+SoPsjunYCQQQQLZJAEAGEkASCCCCEJBBEACEkgSACCCEJBBFACEkgiABCSAJBBBBCEggiwP8HtY/8CNTyLq0AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#import libraries\n", "from gridData import Grid\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from matplotlib.ticker import MaxNLocator\n", "\n", "# Read the total.dx file (Electronic + Nuclear + Electrolyte density)\n", "total_density = Grid(\"total.dx\")\n", "\n", "# Grid details\n", "gx = total_density.grid.shape[0]\n", "gy = total_density.grid.shape[1]\n", "gz = total_density.grid.shape[2]\n", "dx = total_density.delta[0]\n", "dz = total_density.delta[2]\n", "x = np.arange(gx)\n", "z = np.arange(gz)\n", "ax, az = np.meshgrid(x, z)\n", "lx = dx * ax\n", "lz = dz * az\n", "\n", "cmap = plt.cm.seismic\n", "norm = plt.Normalize(vmin=-0.001, vmax=0.001)\n", "total_density_slice = -np.sum(total_density.grid, axis=1) / (gx * gy)\n", "plt.pcolormesh(lx, lz, total_density_slice.T, shading='gouraud', cmap=cmap, norm=norm)\n", "#colorbar settings\n", "colorbar = plt.colorbar(shrink=0.45)\n", "colorbar.ax.tick_params(labelsize=8.5)\n", "colorbar.locator = MaxNLocator(nbins=4)\n", "#Plotting \n", "plt.xlabel(r'$x$ ($\\rm \\AA$)')\n", "plt.ylabel(r'$z$ ($\\rm \\AA$)')\n", "plt.tight_layout()\n", "plt.gca().set_aspect('equal', adjustable='box')\n", "plt.savefig(\"density_slice.png\", dpi=2000, transparent=True)\n", "plt.show()\n" ] } ], "metadata": { "kernelspec": { "display_name": "WORK_PY", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }